

New Satara College of Engineering and Management (Polytechnic) Korti, Pandharpur

Approved by AICTE & Affiliated MSBTE

MSBTE Institute code: 1523, DTE Institute code: D-6725 Gat No. 429/1/B/1, A/p - Korti, Tal. - Pandharpur, Dist. - Solapur Office 9607772481, 9225538306

Web: - www.newsatarapoly.in E-mail- newsatarapoly@gmail.com

First Year (Common to all Programs)

Scheme: I Semester: First

Name of Course: Basic Mathematics Course Code:

22103

MSBTE Question papers & Model Answers

- ✓ MSBTE Exam Winter-2017
- **✓ MSBTE Exam Summer-2018**
- **✓ MSBTE Exam Winter-2018**
- ✓ MSBTE Exam Summer-2019

3 Hours/70 Mark	ζS	Seat No.							
Instructions :	(2) Answer e(3) Illustrate(4) Figures t(5) Assume s	ions are compeach next mai your answer to the right in suitable data, Non-program ble.	n ques s with dicate if nece	tion on on neat ske full ma ssary.	rtches w	hereve			
								I	Marks
1. Attempt any five of the	following:								10
a) Evaluate $\log_3 81$.									
b) Show that the point	ts(8,1)(3,-4)a	and $(2, -5)$ are	colline	ear using	determ	inant.			
c) Without using calcu	ılator find the va	lue of sin(105°).						
d) Find the area of a rl	nombus whose o	diagonals are o	of lengt	ths 10 cn	n and 8.2	2 cm.			
e) If the volume of a s	phere is —	. Find its su	rface a	rea.					
f) Find the range and	coefficient of ra	inge of the data	ı:						
50, 90, 120, 40, 18	80, 200, 80.								
g) If the coefficient of	variation of cert	tain data is 5 a	nd mea	n is 60. I	Find the	standaı	rd devi	iation.	
2. Attempt any three of th	e following:								12
a) If	whe	etherAB is sing	gular oı	non-sin	gular ma	ntrix ?			
b) Resolve into partial	fractions		<u> </u>						
c) Using Cramer's ru	le solve x – y –	2z = 1; 2x + 3	y + 4z	=4;3x-	-2y-6	z = 5.			
d) Compute the stand	ard deviation fo	or 15, 22, 27, 1	1, 9, 2	1, 14, 9.					

Marks

12

12

12

3. Attempt any three of the following:

a) If tan(x + y) = / and tan(x - y) = /. Prove that tan 2x = /.

b) If
$$A = 30^{\circ}$$
, verify that

i)
$$\sin 2A = 2 \sin A \cos A$$

ii) ————

c) Prove that $\cos 20 \cos 40 \cos 60 \cos 80 = /$.

d) Prove that

4. Attempt any three of the following:

- a) If . Verify that $(AB)^T = B^T A^T$.
- b) Resolve into partial fraction ______.
- c) Prove that $\sin (A + B) \sin (A B) = \sin^2 A \sin^2 B$.
- d) If $\sin A = /$ find the value of $\sin 3A$.
- e) Prove that ———— .

5. Attempt any two of the following:

- a) i) Find the equation of straight line passes through the points (3,5) and (4,6).
 - i) Find the distance between the parallel lines 3x y + 7 = 0 and 3x y + 16 = 0.
- b) i) Find the acute angle between the lines 2x + 3y + 5 = 0 and x 2y 4 = 0.
 - i) Find the equation of the line through the point of intersection of lines, 4x + 3y = 8; and x + y = 1 and parallel to the line 5x 7y = 3.
- c) i) The area of a rectangular courtyard is 3000 sq.m. Its sides are in the ratio 6:5. Find the perimeter of courtyard.
 - i) A circus tent is cylindrical to a height of 3m and conical above it. If its diameter is 105 m and slant height of cone is 5m, calculate the area of total canvas required.

Marks

12

6. Attempt any two:

a) Using matrix inversion method, solve x + y + z = 3; x + 2y + 3z = 4; x + 4y + 9z = 6.

b) Find mean, standard deviation and coefficient of variance of the following:

Class:	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
Frequency:	3	5	8	3	1

c) i) Calculate the range and coefficient of range for the following data:

Class:	21 – 25	26 – 30	31 – 35	36 – 40	41 – 45
Frequency:	4	16	38	12	10

i) The two sets of observations are given below. Which of them is more consistent ?

Set I

$$- = 48.75$$

$$= 7.3$$

$$=8.35$$

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION

Model Answer

Subject Code:

22103

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any five of the following:	10
	a)	Evaluate log ₃ 81	02
	Ans	$\log_3 81$	1/2
		$=\log_3 3^4$	1/2
		$=4\log_3 3$	1/2
		=4(1)	
		=4	1/2
		OR	
		$\log_3 81$	
		$=\frac{\log 81}{\log 3}$	1/2
		$\log 3$	1/2
		$=\frac{\log 3}{\log 3}$	72
			1/2
		$=\frac{4\log 3}{\log 3}$	1/2
		=4	,-
	b)	Show that the points $(8,1)$ $(3,-4)$ and $(2,-5)$ are collinear using determinant.	02
	Ans	Consider $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$	
		$ x_3 y_3 1 $	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		<u>Model Allswer</u> Subject Code:	
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	b)	$\begin{vmatrix} 8 & 1 & 1 \\ 3 & -4 & 1 \\ 2 & -5 & 1 \end{vmatrix}$	1/2
		$\begin{vmatrix} 2 -5 & 1 \\ = 8(-4+5)-1(3-2)+1(-15+8) \end{vmatrix}$	1/2
		=0	1/2
		∴Points are collinear	1/2
	c) Ans	Without using calculator find the value of $\sin(105^{\circ})$	02
		$ \sin\left(105^{0}\right) = \sin\left(60^{0} + 45^{0}\right) $	1/2
		$= \sin 60^{0} \cos 45^{0} + \cos 60^{0} \sin 45^{0}$	1/2
		$= \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}} + \frac{1}{2} \frac{1}{\sqrt{2}}$	1/2
		$= \frac{\sqrt{3} + 1}{2\sqrt{2}} \text{OR} 0.9659$	1/2
	d) Ans	Find area of rhombus whose diagonals are of length 10 cm and 8.2 cm Area of rhombus = $\frac{1}{2} \times d_1 \times d_2$ = $\frac{1}{2} \times 10 \times 8.2$	- 02
		= 41 sq. cm	1
	e) Ans	If the volume of a sphere is $\frac{4\pi}{3}$ cm ³ . Find its surface area Volume of sphere = $\frac{4}{3}\pi r^3$	02
		$\therefore \frac{4\pi}{3} = \frac{4}{3}\pi r^3$ $1 = r^3$	1/2
		$\therefore r = 1$ Surface area of sphere = $4\pi r^2$	1/2
		$=4\pi \left(1\right)^{2}$	1/2
		$= 4\pi$ OR 12.56 cm ²	1/2
			-
		<u> </u>	No 02/21

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Model Answer Subject Code: 22	103
Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	f)	Find the range and coefficient of range of the data:	02
		50, 90, 120, 40, 180, 200, 80.	
	Ans	Range = $L - S = 200 - 40$	
		=160	1
		Coefficient of range = $\frac{L-S}{}$	
		L+S	
		$=\frac{200-40}{200+40}$	1/2
		$= {2 \atop -2} OR 0.667$	17
		$= _{-} OR 0.007$	1/2
	<i>a</i>)		
	g)	If the coefficient of variation of certain data is 5 and mean is 60. Find the standard deviation.	02
	Ans	Coefficient of variation = $\frac{S.D.}{Mean} \times 100$	
			1
		$\therefore 5 = \frac{S.D.}{60} \times 100$	1
		$\therefore \frac{5 \times 60}{100} = S.D.$	
		100 $\therefore S.D. = 3$	1
			1
2.		Attempt any three of the following:	12
	a)	If $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$ whether AB is singular or non-singular matrix?	04
	,		
	Ans	$AB = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$	
			1
		$AB = \begin{bmatrix} 2+3 & 4-2 \\ 0+9 & 0-6 \end{bmatrix}$ $AB = \begin{bmatrix} 5 & 2 \\ 9 & -6 \end{bmatrix}$	1
		$AB = \begin{bmatrix} 5 & 2 \\ 1 & 1 \end{bmatrix}$	
			1
		$\begin{vmatrix} \therefore AB = \begin{vmatrix} 5 & 2 \\ 9 & -6 \end{vmatrix} = -30 - 18 = -48$	1
		$\therefore AB \neq 0$	1/2
		$\therefore AB$ is non-singular matrix	1/2
			/2
		Decolusion portion for at the $x+3$	04
	b)	Resolve into partial fractions: $\frac{x+5}{(x-1)(x+1)(x+5)}$	V -1
		`	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

	1	Subject Code.	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	b)	x+3 A B C	1/2
	Ans	$\frac{1}{(x-1)(x+1)(x+5)} = \frac{1}{x-1} + \frac{1}{x+1} + \frac{1}{x+5}$	
	Alls	$\therefore x+3=A(x+1)(x+5)+B(x-1)(x+5)+C(x-1)(x+1)$	
		Put $x = 1$	
		4 = A(2)(6)	
		4=12A	
		$\therefore A = \frac{1}{2}$	1
		3	
		Put $x = -1$	
		-1+3=B(-2)(4)	
		2 = -8B	
		$\therefore B = -\frac{1}{4}$	1
		Put $x = -5$	
		-5+3=C(-6)(-4)	
		-2 = 24C	
		$\therefore C = \frac{-1}{2}$	1
		12	1
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\frac{x+3}{(x-1)(x+1)(x+5)} = \frac{\frac{1}{3}}{x-1} + \frac{-\frac{1}{4}}{x+1} + \frac{-\frac{1}{12}}{x+5}$	1/2
		$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	c)	Using Cramers rule solve $x - y - 2z = 1$; $2x + 3y + 4z = 4$; $3x - 2y - 6z = 5$	04
	Ans		
	Alls	$D = \begin{vmatrix} 1 & -1 & -2 \\ 2 & 3 & 4 \\ 3 & -2 & -6 \end{vmatrix}$	
		$\begin{bmatrix} -1 & -1 & -1 \\ 3 & -2 & -6 \end{bmatrix}$	
		=1(-18+8)+1(-12-12)-2(-4-9)	
		$\begin{vmatrix} -8 \end{vmatrix} = -8$	1
		$D_{x} = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \end{vmatrix}$	
		$D_x = \begin{vmatrix} 1 & -1 & -2 \\ 4 & 3 & 4 \\ 5 & -2 & -6 \end{vmatrix}$	
		=1(-18+8)+1(-24-20)-2(-8-15)	
		=-8	
		$\therefore x = \frac{D_x}{1} = \frac{-8}{1} = 1$	1
		$\frac{1}{D}$ $\frac{1}{-8}$	
		Paga Na	0.4/0.4

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION <u>Model Answer</u>

			<u> </u>	22103
Q. No.	Sub Q. N.		Answer	Marking Scheme
2.	c)	$D_{y} = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 4 & 4 \\ 3 & 5 & -6 \end{vmatrix}$ $= 1(-24 - 20) - 1(-12 - 12) - 2$ $= -16$ $\therefore y = \frac{D_{y}}{D} = \frac{-16}{-8} = 2$ $D_{z} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & 4 \\ 3 & -2 & 5 \end{vmatrix}$ $= 1(15 + 8) + 1(10 - 12) + 1(-4 - 4)$		1
		$D_z = 8$ $z = \frac{D_z}{D} = \frac{8}{-8} = -1$	2)	1
	d)	Compute the standard deviation	on for 15, 22, 27, 11, 9, 21, 14, 9.	04
	Ans			
		22 6 36 27 11 121		
		11 -5 25		2
		9 -7 49 21 5 25		
		14 -2 4		
		9 -7 49		
		$\sum_{i=1}^{\infty} x_i = \sum_{i=1}^{\infty} \frac{\sum_{i=1}^{\infty} d_i^2}{310}$		
		Mean $\bar{x} = \frac{\sum x_i}{n}$		
				ro No 05/21

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
2.	d)	Mean $\overline{x} = \frac{128}{8} = 16$ Standard deviation $\sigma = \sqrt{\frac{\sum d_i^2}{n}}$ $= \sqrt{\frac{310}{8}}$ $= 6.22$ OR	1
			2
		Mean $\overline{x} = \frac{\sum x_i}{n}$ $\overline{x} = \frac{128}{8} = 16$ Standard deviation $\sigma = \sqrt{\frac{\sum x_i^2}{N} - (\overline{x})^2}$ $= \sqrt{\frac{2358}{8} - (16)^2}$ $= 6.22$	1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Subject Code. 22	105
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.		Attempt any three of the following:	12
		15 to 1 () 3 / and to 2 () 8 / Brown that to 2 77 /	
	a)	If $\tan(x+y) = \frac{3}{4}$ and $\tan(x-y) = \frac{8}{15}$. Prove that $\tan 2x = \frac{77}{36}$	04
	Ans	Consider	
		2x = x + y + x - y $ton 2x = ton (x + y + x - y)$	1
		$\tan 2x = \tan (x + y + x - y)$ $\tan (x + y) + \tan (x - y)$	
		$= \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y)\tan(x-y)}$	1
		$=\frac{3}{4} + \frac{3}{15}$	1
		$=\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \frac{8}{15}}$	1
		415	
		$=\frac{77}{36}$	1
		$\therefore \tan 2x = \frac{77}{36}$	
		OR	
		Let $x + y = A$	
		x - y = B	
		$\therefore \tan A = \frac{3}{2}, \tan B = \frac{8}{2}$	
		$4 15$ $\therefore 2x = A + B = x + y + x - y$	
		$\tan 2x = \tan (A+B)$	1
		$\tan A + \tan B$	
		$=\frac{1-\tan A \tan B}{1-\tan B}$	1
		$\frac{3}{1} + \frac{8}{1}$	
		_ 4 15	1
		$-\frac{3}{1-\frac{3}{4}\frac{8}{15}}$	
		$=\frac{77}{36}$	
			1
		$\therefore \tan 2x = \frac{77}{36}$	
	b)	If $A = 30^{\circ}$, verify that	04
		$i) \sin 2A = 2\sin A \cos A$	
		$ii)\cos 2A = \frac{1-\tan^2 A}{2}$	
		$u)\cos 2A = \frac{1}{1+\tan^2 A}$	
		Dage No.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Subject Code. 22	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	b)	$i)L.H.S. = \sin 2A$	
		$=\sin 2(30^{0})$	
	Ans	$=\sin 60^{0}$	
		$=\frac{\sqrt{3}}{2}$	1
		$R.H.S. = 2\sin A\cos A$	
		$= 2 \sin 30^{\circ} \cos 30^{\circ}$	
		$=2\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$	
		$=\frac{\sqrt{3}}{2}$	1
		2 $\therefore \sin 2A = 2\sin A \cos A$	
		$ii)L.H.S. = \cos 2A = \cos 2(30^{\circ})$	
		$= \cos 60^{0}$	
			1
		$=\frac{1}{2}$	1
		$R.H.S. = \frac{1 - \tan^2 A}{1 + \tan^2 A}$	
		$1+\tan^2 A$	
		$=\frac{1-\tan^2 30^0}{1+(1-2)^2 \cos 9}$	
		$-\frac{1+\tan^2 30^0}{1+\int_0^2 1}$	
		$1-\left(\frac{1}{\sqrt{2}}\right)$	
		$=\frac{\sqrt{3}}{1+\left(\frac{1}{\sqrt{2}}\right)^2}$	
		1	
		$=\frac{1}{2}$	1
		$\therefore \cos 2A = \frac{1 - \tan^2 A}{1 + \cot^2 A}$	
		$\frac{1 + \cos 2A - \frac{1}{1 + \tan^2 A}}{1 + \tan^2 A}$	
		Prove that $\cos 20\cos 40\cos 60\cos 80 = \frac{1}{2}$	
	c)	16	04
	Ans	$L.H.S. = \cos 20 \cos 40 \cos 60 \cos 80$	
		$= \cos 20 \cos 40 \frac{1}{2} \cos 80$	1/2
		$\frac{1}{1}$	72
		$= \frac{1}{4} (2\cos 20\cos 40)\cos 80$	1/2
			, -

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Model Answer Subject Code: 22	103
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	c)	L.H.S. = $\frac{1}{4} (\cos 60 + \cos 20)\cos 80$ = $\frac{1}{4} (\frac{1}{2} + \cos 20)\cos 80$ = $\frac{1}{4} (\frac{1}{2} \cos 80 + \cos 20\cos 80)$ = $\frac{1}{4} (\cos 80 + 2\cos 20\cos 80)$	1
		$= \frac{1}{8} (\cos 80 + \cos 100 + \cos 60)$ $= \frac{1}{8} (\cos 80 + \cos 100 + \frac{1}{2})$ $= \frac{1}{8} (\cos 80 + \cos (\pi - 80) + \frac{1}{2})$ $= \frac{1}{8} (\cos 80 - \cos 80 + \frac{1}{2})$	1/2
		1	1/2
		$= \frac{1}{16}$ $= R.H.S.$	1/2
	d)	Prove that $\cos^{-1}(4) + \cos^{-1}(12/3) = \cos^{-1}(33/65)$	04
	Ans	Put $\cos^{-1}(A_5) = A$ $\therefore \cos A = \frac{4}{5}$ $\therefore \sin A = \sqrt{1 - \cos^2 A}$ $= \sqrt{1 - \frac{16}{25}}$ $= \frac{3}{5}$ Put $\cos^{-1}(12) = B$ $\therefore \cos B = \frac{12}{13}$ $\therefore \sin B = \sqrt{1 - \cos^2 B}$ $= \sqrt{1 - \frac{144}{169}}$	1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Model Answer Subject Code: 22	103
Q. No.	Sub Q. N.	Answer	Marking Scheme
3.	d)	$\therefore \sin B = \frac{5}{2}$	1
		Consider,	
		$\cos(A+B) = \cos A \cdot \cos B - \sin A \cdot \sin B$	
		$\cos(A+B) = \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{3}{5}\right)\left(\frac{5}{13}\right)$	1
		$\therefore \cos(A+B) = \frac{33}{65}$	1/2
		$\therefore A + B = \cos^{-1}\left(\frac{33}{65}\right)$	1/2
		$\cos(A+B) = \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{3}{5}\right)\left(\frac{5}{13}\right)$ $\therefore \cos(A+B) = \frac{33}{65}$ $\therefore A+B = \cos^{-1}\left(\frac{33}{65}\right)$ $\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	
		<u>OR</u>	
		Let $\cos^{-1} \left(\frac{4}{5} \right) = A$ $\therefore \cos A = \frac{4}{5}$ B	
		$\therefore \cos A = \frac{4}{5}$ A B 12	
		$\therefore \tan A = \frac{3}{4}$	
		$\therefore \tan A = \frac{3}{4}$ $A = \tan^{-1} \left(\frac{3}{4} \right)$	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	1
		Let $\cos^{-1}\left(\frac{12}{13}\right) = B$ $\therefore \cos B = \frac{12}{13}$ $\therefore \tan B = \frac{5}{12}$ $\therefore B = \tan^{-1}\left(\frac{5}{12}\right)$ $\cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \tan B = \frac{5}{12}$	
		$\therefore B = \tan^{-1} \left(\begin{array}{c} 5 \\ \hline 12 \end{array} \right)$	
		$\cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$	1
		$L.H.S. = \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right)$	
		Dogo No.	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

Q. Sub No. Q. N. Answer 3. d) L.H.S. = $\tan^{-1} \left(\frac{3}{4}\right) + \tan^{-1} \left(\frac{5}{12}\right)$	Marking Scheme
$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}} \right)$ $= \tan^{-1} \left(\frac{56}{33} \right)$ $= \cot^{-1} \left(\frac{56}{33} \right) = C$ Let $\cot^{-1} \left(\frac{56}{33} \right) = C$	1/2
$\therefore \tan C = \frac{56}{33}$ $\therefore \cos C = \frac{33}{65}$ $\therefore C = \cos^{-1} \left(\frac{33}{65}\right)$ $\therefore \tan^{-1} \left(\frac{56}{33}\right) = \cos^{-1} \left(\frac{33}{65}\right) = R.H.S.$	1
Attempt any three of the following: $\begin{bmatrix} 2 & 5 & 6 \end{bmatrix}$	12
a) If $A = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 1 \\ 0 & 4 \end{bmatrix}$. Verify that $(AB)^T = B^T A^T$	04
Ans $\begin{vmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{vmatrix} \begin{vmatrix} 0 & 4 \\ 5 & 7 \end{vmatrix}$	
$AB = \begin{bmatrix} 12+0+30 & 2+20+42 \\ 0+0+10 & 0+4+14 \end{bmatrix}$	1
$AB = \begin{bmatrix} 42 & 64 \\ 10 & 18 \end{bmatrix}$	1/2
	1/2
$AB = \begin{bmatrix} 42 & 64 \\ 10 & 18 \end{bmatrix}$ $(AB)^{T} = \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$ $B^{T}A^{T} = \begin{bmatrix} 6 & 0 & 5 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 5 & 1 \\ 6 & 2 \end{bmatrix}$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Model Miswel Subject Code. 22	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	a)	$B^{T}A^{T} = \begin{bmatrix} 12 + 0 + 30 & 0 + 0 + 10 \\ 2 + 20 + 42 & 0 + 4 + 14 \end{bmatrix}$	1
		$B^{T}A^{T} = \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$ $\therefore (AB)^{T} = B^{T}A^{T}$	1/2
		$\therefore (AB)^{r} = B^{r} A^{r}$	
	b)	Resolve into partial fraction $\frac{x^2 - x + 3}{(x-2)(x^2+1)}$	04
	Ans	$\frac{x^2 - x + 3}{(x - 2)(x^2 + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 1}$	1/2
		$\therefore x^2 - x + 3 = (x^2 + 1) A + (x - 2) (Bx + C)$ Put $x = 2$	
		5 = 5A $A = 1$	1
		Put x = 0 $3 = A - 2C$	
		C = -1 Put $x = 1$	1
		3 = 2A + (-1)(B+C) $3 = 2 - B + 1$ $B = 0$	1
		$\frac{x^2 - x + 3}{(x - 2)(x^2 + 1)} = \frac{1}{x - 2} + \frac{(0)x - 1}{x^2 + 1}$	1/2
		$\frac{(x-2)(x+1)}{(x-2)(x+1)} = \frac{1}{x-2} - \frac{1}{x^2+1}$	
	(c)	Prove that : $\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B$ $\sin(A+B)\sin(A-B)$	04
	Ans	$= (\sin A \cos B + \cos A \sin B)(\sin A \cos B - \cos A \sin B)$	1
		$=\sin^2 A \cos^2 B - \cos^2 A \sin^2 B$	1
		$=\sin^2 A \left(1-\sin^2 B\right) - \left(1-\sin^2 A\right)\sin^2 B$	1
		$= \sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 A \sin^2 B$	
		$=\sin^2 A - \sin^2 B$	1
-			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

Q.	Sub	A	Marking
No.	Q. N.	Answer	Scheme
4.	d)	If $\sin A = \frac{1}{2}$ find the value of $\sin 3A$.	04
	Ans	$\sin 3A = 3\sin A - 4\sin^3 A$	1
		$=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^3$	1
		= 1	2
	e)	Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$ $L.H.S. = \frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \sin 5A + \sin 6A}$	04
	Ans	$= \frac{\cos 4A + \cos 5A + \cos 6A}{\sin 4A + \sin 6A + \sin 5A}$ $= \frac{\sin 4A + \sin 6A + \sin 5A}{\cos 4A + \cos 6A + \cos 5A}$	
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A}$ $= \frac{2\sin 5A\cos(-A)+\sin 5A}{2}$	1
		$-\frac{2\cos 5A\cos(-A)+\cos 5A}{2\cos 5A\cos(-A)+\cos 5A}$	1
		$= \frac{\sin 5A \left(2\cos(-A)+1\right)}{\cos 5A \left(2\cos(-A)+1\right)}$	1
		$= \tan 5A$ $= R.H.S.$	1
5.		Attempt any two of the following:	12
	a) (i)	Find the equation of straight line passes through the points $(3,5)$ and $(4,6)$. Equation of line is	03
	Ans	$\frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2}$ $y - 5 x - 3$	
		$\frac{y-5}{5-6} = \frac{x-3}{3-4}$ $\frac{y-5}{-1} = \frac{x-3}{-1}$	2
		x - y + 2 = 0	1
	(ii) Ans	Find the distance between the parallel lines $3x - y + 7 = 0$ and $3x - y + 16 = 0$ For $3x - y + 7 = 0$	03
		Paga Na	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Model Answer Subject Code:	22103
Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	a) (ii)	$a=3, b=-1, c_1=7$ For $3x-y+16=0$ $a=3, b=-1, c_2=16$ ∴ distance between two parallel lines is $\begin{vmatrix} c_2-c_1 & & 16-7 \end{vmatrix}$	
		$\begin{vmatrix} = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right = \left \frac{16 - 7}{\sqrt{3^2 + (-1)^2}} \right \\ = \left \frac{9}{\sqrt{10}} \right \\ = \frac{9}{\sqrt{10}} \text{ OR } 2.846 $	1
	b) (i) Ans	Find the acute angle between the lines $2x + 3y + 5 = 0$ and $x - 2y - 4 = 0$ For $2x + 3y + 5 = 0$	03
		slope $m_1 = -\frac{a}{b} = -\frac{2}{3}$ For $x - 2y - 4 = 0$,	1/2
		slope $m_2 = -\frac{a}{b} = -\frac{1}{-2} = \frac{1}{2}$ $\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	1/2
		$= \frac{-\frac{2}{3} - \frac{1}{2}}{1 + \left(-\frac{2}{3}\right) \cdot \left(\frac{1}{2}\right)}$ $= \frac{7}{4}$ $\therefore \theta = \tan^{-1} \left(\frac{7}{4}\right) OR 60.26^{\circ}$	1
	(ii)	Find the equation of the line through the point of intersection of lines, 4x + 3y = 8; and $x + y = 1$ and parallel to the line $5x - 7y = 3$	03
	Ans	$\therefore 4x + 3y = 8$ $\underline{x + y = 1}$ $\therefore 4x + 3y = 8$ $\underline{-4x + 4y = 4}$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

0	Sub		Marking
Q. No.	Q. N.	Answer	Scheme
5.	b) (ii)	-y=4	
		y = -4	
		$\therefore x-4=1$	
		$\therefore x = 5$	1
		$\therefore Point of intersection = (5, -4)$	1
		Slope of the line $5x - 7y = 3$ is,	
		$m = -\frac{a}{b} = -\frac{5}{-7} = \frac{5}{7}$	1/2
		∴ Slope of the required line is,	
		$m=\frac{5}{7}$	1/2
		∴ equation required line is,	
		$y - y_1 = m(x - x_1)$	
		5 (5)	1/
		$\therefore y + 4 = \frac{5}{7}(x - 5)$	1/2
		$\therefore 5x - 7y - 53 = 0$	1/2
	c) (i)	The area of a rectangular courtyard is 3000 sq.m. Its sides are in the ratio 6:5. Find	03
		the perimeter of courtyard.	03
	Ans	Area of rectangular courtyard is = length × breadth	
		Given $l:b=6:5$	
		$ \begin{array}{c} l & 6 \\ i.e. & \underline{} = \underline{} \end{array} $	
		b 5	
		$\therefore l = {6 \atop -}b$	
		5	
		$A = l \times b$	
		$3000 = {}^{6}_{-}b \times b$	
		15000	
		$\frac{15000}{6} = b^2$	
		$2500 = b^2$	1
		$\therefore b = 50$	•
		$\therefore l = \frac{6}{b}b = \frac{6}{12} \times 50$	
		$\begin{array}{ccc}t = & b = & \times 30 \\ & 5 & 5 \end{array}$	1
		$\therefore l = 60$	
		Perimeter of rectangular courtyard is = $2(l+b)$	
		=2(60+50)	
		$= 220 \ m.$	1
		Paga No 1	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		<u>Woder Answer</u> Subject Code: 222	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	c) (i)	OR	
		Sides are in the ratio 6:5	
		Let <i>x</i> be the common multiple	
		\therefore Sides are $6x$ and $5x$	
		$\therefore A = 3000$	
		$\therefore 6x \times 5x = 3000$	
		$\therefore 30x^2 = 3000$	
		$\therefore x^2 = 100$	1
		$\therefore x = 10$	1
		:. Sides are $6x = 60 = l$ and $5x = 50 = b$	1
		Perimeter of rectangular courtyard is = $2(l+b)$	
		=2(60+50)	
		=220 m.	1
	c) (ii)	A circus tent is cylindrical to height 3 m and conical above it . If its diameter is	
		105 m and slant height of cone is 5 m, calculate the area of total canvas required.	03
	Ans		
	7 1113	Given $h = 3m$, $d = 105m$: $r = \frac{105}{2} = 52.5m$, $l = 5m$	
		curved surface area of cylinder = $2\pi rh$	
		$=2\times3.14\times52.5\times3=989.1 \ sq.m.$	1
		curved surface area of cone = πrl	
		$=3.14\times52.5\times5=824.25 \text{ sq.m.}$	1
		∴ Area of total canvas required = 989.1+824.25	
		$=1813.35 \ sq.m.$	1
6.		Attempt any two:	12
	a)	Using matrix inversion method, solve	06
		x+y+z=3; $x+2y+3z=4$; $x+4y+9z=6$	
		Γ1 1 1]	
	Ans	$ \text{Let } A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} $	
		$\begin{vmatrix} A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix}$	
		1 4 9	
		A = 1(18-12)-1(9-3)+1(4-2)	
	1		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

		Subject Code. 22	
Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	a)	$\therefore A = 2 \neq 0$	1
		$\therefore A^{-1}$ exists	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \end{bmatrix}$ $\begin{bmatrix} 6 & 6 & 2 \end{bmatrix}$	
		$= \begin{bmatrix} 6 & 6 & 2 \\ 5 & 8 & 3 \\ 1 & 2 & 1 \end{bmatrix}$	1
		$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$	1/
			1/2
		OR	
		$\begin{vmatrix} c_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = 6, \ c_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -6, \ c_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 2,$	
		$\begin{vmatrix} c_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} = -5, \ c_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} = 8, \ c_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = -3,$ $c_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1, \ c_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -2, \ c_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1,$	1
		Matrix of cofactors = $\begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \end{bmatrix}$	1/2
		Matrix of cofactors = $\begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$ $\begin{bmatrix} 6 & -5 & 1 \end{bmatrix}$	
		$\therefore AdjA = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } \operatorname{Adj} A = \frac{1}{ A } \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & 2 & 1 \end{bmatrix}$	1
		$X = A^{-1}B$ $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION <u>Model Answer</u>

												L	
Q. No.	Sub Q. N.						An	swe	r				Marking Scheme
6.	a)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2}$	$ \begin{bmatrix} 18 \\ -18 \end{bmatrix} $ $ \begin{bmatrix} 4 \\ 2 \end{bmatrix} $ $ \begin{bmatrix} 4 \\ 0 \end{bmatrix} $ $ \begin{bmatrix} 2 \end{bmatrix} $	-20+6 +32-12 -12+6									1
	b)	$\begin{vmatrix} y \\ z \end{vmatrix} = 1$ $\therefore x = 2$ Find mea	$\begin{bmatrix} 1 \\ \\ 0 \end{bmatrix}$ $y = \begin{bmatrix} 0 \\ \\ \end{bmatrix}$ $x = \begin{bmatrix} 0 \\ \\ \end{bmatrix}$ $x = \begin{bmatrix} 0 \\ \\ \end{bmatrix}$ $x = \begin{bmatrix} 0 \\ \\ \end{bmatrix}$		eviation						ce of the follo	 wing:	 06
		Class	s:	0-10	10-20	20-	30	30	-40	40-5	0		
		Freque	ncy:	3	5	8	}		3	1			
	Ans	C.I.	X_i	\int_{i}		$f_i x_i$	x	2	f_{i}	$\begin{bmatrix} \chi^2 \\ i \end{bmatrix}$			
		0-10	5	3		15	2	5	7.	5			
		10-20	15	5		75	22	25	112	25			
		20-30	25	8		200	62	25	50	00			2
		30-40	35	3		105	12	25	36'	75			2
		40-50	45	1		45	20	25	20				
				N=20		$\sum_{i} f_i x_i = 440$			$\sum f_{i}^{x}$ 1190				
		Mean, \bar{x}	$=\frac{\sum j}{N}$	$\frac{x_i^2 x_i}{x_i} = \frac{44}{20}$	$\frac{10}{0} = 22$								1
		$S.D. = \sqrt{\frac{S}{2}}$	$\frac{\sum f_i x_i}{N}$	$\frac{1}{x} = \frac{1}{2}$	•								
		$S.D. = \sqrt{\frac{r}{r}}$	11900 20	$-(22)^2$									1
		S.D. = 10											1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

Q.	Sub						l		Markin	σ					
No.	Q. N.				Answer				Scheme						
6.	b)	Coefficien OR	Coefficient of variance = $\frac{S.D.}{Mean} \times 100$ = $\frac{10.54}{22} \times 100$ = 47.91%												
		Class 0-10 10-20 20-30 30-40 40-50 Mean, $\underline{x} =$	($ \begin{array}{c cccc} f_{i} & d_{i} \\ 3 & -2 \\ 5 & -1 \\ 8 & 0 \\ 3 & 1 \\ 1 & 2 \\ \hline N & X & A & A & A & A \\ N & & X & A & A & A & A \\ N & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c cccc} & f_{i}d_{i} & d^{2}_{i} \\ & -6 & 4 \\ & -5 & 1 \\ & 0 & 0 \\ & 3 & 1 \\ & 2 & 4 \\ & -6 \\ & 25 + \left(\frac{-6}{20}\right) \times 10 = \\ \hline & \frac{d_{i}}{a} \right)^{2} \times h $	$ \begin{array}{c c} f_i d_i^2 \\ \hline 12 \\ 5 \\ 0 \\ \hline 3 \\ 4 \\ \hline 24 \end{array} $			2						
		=	$\sqrt{\frac{24}{20}}$ 10.54	$-\left(\frac{-6}{20}\right)^{2} \times 10$ $4 \text{ variance} = \frac{S.L}{Med}$	$\frac{0.}{m} \times 100$ $\frac{54}{2} \times 100$				1 1 1						
		C.I. 0-10 10-20 20-30 30-40	x _i 5 15 25 35 45	f_{i} 3 5 8 3 1 $\sum f_{i} = 20$	$f_{i}x_{i}$ 15 75 200 105 45 $\sum f_{i}x_{i} = 440$		$f_{i}\left(x_{i}-\overline{x}\right)^{2}$ 867 245 72 507 529 $\sum f_{i}\left(x_{i}-\overline{x}\right)^{2}=2220$		2						
								ro No 1							

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

							IUUCI AII	5 11 01		Saej	cei coue.		.05
Mean, $x = {N} = {20} = {22}$ $S.D. = \sqrt{\frac{\sum f_i(x_i - x)^2}{\sum f_i}}$ $S.D. = \sqrt{\frac{2220}{20}}$ $S.D. = 10.54$ $Coefficient of variance = \frac{S.D.}{Mean} \times 100$ $= \frac{10.54}{22} \times 100$ $= 47.91\%$ $Calculate the range and coefficient of range for the following data: Class: 21.25 26.30 31.35 36.40 41.45 Frequency: 4 16 38 12 10 Ans C.I. 20.5 \cdot 25.5 25.5 \cdot 30.5 30.5 \cdot 35.5 35.5 \cdot 40.5 40.5 \cdot 45.5 f_i 4 16 38 12 10 Range = L - S = 45.5 - 20.5 = 25 Coefficient of range = \frac{L - S}{L + S} = \frac{45.5 - 20.5}{45.5 + 20.5} = \frac{25}{45.5 + 20.5} = \frac{25}{66} OR 0.379 The two sets of observations are given below. Which of them is more consistent? Set I Set II \overline{x} = 82.5 \overline{x} = 48.75$							An	swer			'		Marking Scheme
$S.D. = \sqrt{\frac{\sum f_i}{200}}$ $S.D. = 10.54$ $Coefficient of variance = \frac{S.D.}{Meam} \times 100$ $= \frac{10.54}{22} \times 100$ $= 47.91\%$ $Calculate the range and coefficient of range for the following data:$ $Class: $	6.	b)	Mean,	$x = \underline{\hspace{1cm}}$	=	= 22							1
S.D. = $\sqrt{\frac{20}{20}}$ S.D. = 10.54 Coefficient of variance = $\frac{S.D.}{Mean} \times 100$ = $\frac{10.54}{22} \times 100$ = $\frac{47.91\%}{22}$ Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data: Calculate the range and coefficient of range for the following data:			S.D. = 3	$\sqrt{\frac{\sum J_i}{\sum}}$	$\int_{-\infty}^{\infty} f_i$	-							
Coefficient of variance = $\frac{S.D.}{Mean} \times 100$ = $\frac{10.54}{22} \times 100$ = 47.91% Calculate the range and coefficient of range for the following data: Class: 21.25 26.30 31.35 36.40 41.45 Frequency: 4 16 38 12 10 Ans C.I. 20.5-25.5 25.5-30.5 30.5-35.5 35.5-40.5 40.5-45.5 f_i 4 16 38 12 10 Range = $L - S = 45.5 - 20.5$ = 25 Coefficient of range = $\frac{L - S}{L + S}$ = $\frac{45.5 - 20.5}{45.5 + 20.5}$ = $\frac{25}{66}$ OR 0.379 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$				V 20									
$= \frac{10.54}{22} \times 100$ $= 47.91\%$ 1 Calculate the range and coefficient of range for the following data: Class: $21-25$ $26-30$ $31-35$ $36-40$ $41-45$ Frequency: 4 16 38 12 10 Ans $C.I. $						C D							1
c) (i) Calculate the range and coefficient of range for the following data: Class: $21-25$ $26-30$ $31-35$ $36-40$ $41-45$ Frequency: 4 16 38 12 10 Ans C.I. $20.5-25.5$ $25.5-30.5$ $30.5-35.5$ $35.5-40.5$ $40.5-45.5$ f_i 4 16 38 12 10 Range = $L-S=45.5-20.5$ $= 25$ Coefficient of range = $\frac{L-S}{L+S}$ $= \frac{45.5-20.5}{45.5+20.5}$ $= \frac{25}{66}$ OR 0.379 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $x=82.5$ $x=48.75$			Coeffic	cient of v	variance	$e = \frac{S.D.}{Mean}$	×100						
c) (i) Calculate the range and coefficient of range for the following data: Class: $21 \cdot 25$ $26 \cdot 30$ $31 \cdot 35$ $36 \cdot 40$ $41 \cdot 45$ Frequency: 4 16 38 12 10 Ans C.1. $20.5 \cdot 25.5$ $25.5 \cdot 30.5$ $30.5 \cdot 35.5$ $35.5 \cdot 40.5$ $40.5 \cdot 45.5$ f_i 4 16 38 12 10 Range = $L - S = 45.5 - 20.5$ = 25 Coefficient of range = $\frac{L - S}{L + S}$ = $\frac{45.5 - 20.5}{45.5 + 20.5}$ = $\frac{25}{66}$ OR 0.379 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $x = 82.5$ $x = 48.75$						$=\frac{10.54}{22}$	×100						
Ans		ı											1
Ans		c) (i)							_	_			03
Ans $ \begin{array}{ c c c c c c } \hline C.I. & 20.5-25.5 & 25.5-30.5 & 30.5-35.5 & 35.5-40.5 & 40.5-45.5 \\ \hline f_i & 4 & 16 & 38 & 12 & 10 \\ \hline Range = L-S = 45.5-20.5 \\ & = 25 \\ \hline Coefficient of range = \frac{L-S}{L+S} \\ & = \frac{45.5-20.5}{45.5+20.5} \\ & = \frac{25}{66} \text{ OR} 0.379 \end{array} 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II \overline{x} = 82.5 \qquad \overline{x} = 48.75$			Cla	ass:	21-25	26-30	31-35	36-40	41-45				
C.I. $20.5-25.5$ $25.5-30.5$ $30.5-35.5$ $35.5-40.5$ $40.5-45.5$ f_i			Frequ	iency:	4	16	38	12	10				
Range = $L - S = 45.5 - 20.5$ = 25 Coefficient of range = $\frac{L - S}{L + S}$ = $\frac{45.5 - 20.5}{45.5 + 20.5}$ = $\frac{25}{66}$ OR 0.379 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$		Ans									-		
Range = $L-S = 45.5 - 20.5$ = 25 Coefficient of range = $\frac{L-S}{L+S}$ = $\frac{45.5 - 20.5}{45.5 + 20.5}$ = $\frac{25}{66}$ OR 0.379 1 c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$			C.I.	20.5-2	5.5 2	25.5-30.5	30.5-35	5.5 35.	5-40.5	40.5-45.5			
Coefficient of range = $\frac{L-S}{L+S}$ $= \frac{45.5-20.5}{45.5+20.5}$ $= \frac{25}{66} \text{ OR } 0.379$ 1 The two sets of observations are given below. Which of them is more consistent? Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$			f_i	4		16	38		12	10			
$= \frac{45.5 - 20.5}{45.5 + 20.5}$ $= \frac{25}{66} \text{ OR } 0.379$			Range			- 20.5							1
$= \frac{45.5 - 20.5}{45.5 + 20.5}$ $= \frac{25}{66} \text{ OR } 0.379$			Coeffic	cient of	range =	$\frac{L-S}{}$							
$= \frac{25}{66} \text{ OR } 0.379$					= _	L+S 45.5-20.5	5						1
c) (ii) The two sets of observations are given below. Which of them is more consistent? Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$													
Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$					=-	— OR 56	0.379						1
Set I Set II $\overline{x} = 82.5$ $\overline{x} = 48.75$		c) (ii)	The tw	o sets of	f observ	ations are	given be	elow. Wł	nich of t	hem is more	consister	nt?	03
			_										
			O = 7.3	, 	υ = 	- 0.33							

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2017 EXAMINATION **Model Answer**

Q. No.	Sub Q. N.	Answer	Marking Scheme
			Marking

21718

3 Hours / 70 Marks

Seat No.

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with **neat** sketches **wherever** necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is **permissible**.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

10

1. Attempt any five of the following:

a) Find the value of
$$\log \binom{2}{3} + \log \binom{4}{5} - \log \binom{8}{15}$$
.

- b) Find the area of the triangle whose vertices are (3, 1), (-1, 3) and (-3, -2).
- c) Without using calculator, find the value of sec (3660°).
- d) The length of one side of the rectangle is twice the length of its adjacent side. If the perimeter of rectangle is 60 cms, find the area of the rectangle.
- e) Find the surface area of a cuboid of dimensions 26 cms; 20 cms and 12 cms.
- f) Find range and coefficient of range for the data: 120, 50, 90, 100, 180, 200, 150, 40, 80.
- g) If coefficient of variation of a distribution is 75% and standard deviation is 24, find its mean.

2. Attempt any three of the following:

a) If
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$. Find X such that $2X + 3A - 4B = I$.

b) Resolve into partial fractions : $\frac{x^2 + 1}{x(x^2 - 1)}$.

12

Marks

12

c) The voltage in an electric circuit are related by following equations:

$$V_1 + V_2 + V_3 = 9$$
; $V_1 - V_2 + V_3 = 3$; $V_1 + V_2 - V_3 = 1$ find V_1 , V_2 and V_3 by using Cramer's rule.

d) Calculate the mean deviation about the mean of the following data:

- 3. Attempt any three of the following:
 - 12 a) Without using calculator, find the value of
 - $\cos 570^{\circ}$. $\sin 510^{\circ} + \sin(-330^{\circ}).\cos(-390^{\circ})$.
 - b) Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta.$
 - c) Prove that $\frac{\sin 3A \sin A}{\cos 3A + \cos A} = \tan A$.
 - d) Prove that $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \cot^{-1} 2$.
- **4.** Attempt **any three** of the following:
 - a) Find x and y if

$$\left\{4 \cdot \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \end{bmatrix} - 2 \cdot \begin{bmatrix} 1 & 3 & -1 \\ 2 & -3 & 4 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}.$$

- b) Resolve into partial fractions $\frac{2x+1}{(x-1)\cdot(x^2+1)}$.
- c) Prove that $\cos 20^{\circ} . \cos 40^{\circ} . \cos 60^{\circ} . \cos 80^{\circ} = \frac{1}{16}$.
- d) If $\tan \frac{\theta}{2} = \frac{2}{3}$ find the value of $2\sin \theta + 3\cos \theta$.
- e) If A and B are obtuse angles and $\sin A = \frac{5}{13}$ and $\cos B = \frac{-4}{5}$, then find $\sin(A + B)$.

Marks

5. Attempt any two of the following:

12

- a) Attempt the following:
 - i) Find the length of the perpendicular from the point (5, 4) on the straight line 2x + y = 34.
 - ii) Find the equation of the line passing through (3, -4) and having slope $\frac{3}{2}$.
- b) Attempt the following:
 - i) Find the equation of line passing through the point (3, 4) and perpendicular to the line 2x 4y + 5 = 0.
 - ii) Find the acute angle between the lines 3x y = 4, and 2x + y = 3.
- c) Attempt the following:
 - i) Find the capacity of a cylindrical water tank whose radius is 2.1 m and length is 5 m.
 - ii) External dimensions of a wooden cuboid are 30 cm × 25 cm × 20 cm. If the thickness of wood is 2 cm all round. Find the volume of the wood contained in the cuboid formed.

6. Attempt **any two** of the following:

12

a) Calculate the mean, standard deviation and coefficient of variance of the following data:

Class interval	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
Frequency	03	05	08	03	01

- b) Attempt the following:
 - i) Calculate the range and coefficient of range from the following data:

Marks	10 – 19	20 – 29	30 – 39	40 – 49	50 – 59	60 – 69
No. of students	6	10	16	14	8	4

ii) The data of run scored by two batsmen A and B in five one day matches is given below:

Batsman	Average run scored	S.D.
A	44	5.1
В	54	6.31

State which batsman is more consistent?

c) Solve the following equations by matrix inversion method:

$$x + 3y + 3z = 12$$
; $x + 4y + 4z = 15$; $x + 3y + 4z = 13$.

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code:

22103

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	a) Ans	Attempt any five of the following Find the value of $\log \binom{2}{3} + \log \binom{4}{5} - \log \binom{8}{15}$ $\log \binom{2}{3} + \log \binom{4}{5} - \log \binom{8}{15} = \log \binom{2 \times 4}{3 \times 5} - \log \binom{8}{15}$ $= \log \binom{8}{15} - \log \binom{8}{15}$ $= 0 \qquad OR \qquad = \log \binom{\frac{8}{15}}{\frac{15}{3}} = \log(1) = 0$	10 02 1
	b)	Find the area of the triangle whose vertices are $(3,1),(-1,3)$ and $(-3,-2)$.	02
	Ans	Let $(x_1, y_1) = (3,1), (x_2, y_2) = (-1,3)$ and $(x_3, y_3) = (-3,-2)$ $A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \\ -3 & -2 & 1 \end{vmatrix}$	
		$ = \frac{1}{2} \begin{vmatrix} -1 & 3 & 1 \\ -3 & -2 & 1 \end{vmatrix} $ $ = \frac{1}{2} \lfloor \lceil 3(3+2) - 1(-1+3) + 1(2+9) \rceil \rfloor $	1 1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

	Sub		Marking
Q. No.	Q.N.	Answers	Scheme
1.	b)	A = 12	1/2
	c)	Without using calculator, find the value of $sec(3660^{\circ})$	02
	Ans	$\sec(3660^{\circ}) = \sec(40 \times 90^{\circ} + 60^{\circ}) \text{ or } \sec(40 \times \frac{\pi}{2} + 60^{\circ})$	1
		$= \sec 60^{0}$	1/2
		$= \sec 60^{\circ}$ $= 2$	1/2
	٦/.		
	d)	The length of one side of the rectangle is twice the length of its adjacent side. If the perimeter of rectangle is 60 cms, find the area of the rectangle.	02
	Ans	Let adjacent side $= x$	
		\therefore other side = $2x$	1/2
		perimeter = 2(x+2x) = 60	1/2
		$\therefore x = 10$	/2
		$\therefore l = \text{length} = 2x = 20$	
		$\therefore b = \text{breadth} = x = 10$ $Area = l \times b$	
		$= 20 \times 10 = 200$	1
	e)	Find the surface area of a cuboid of dimensions 26 cms; 20 cms ans 12 cms.	02
	Ans	Let $l = 26, b = 20, h = 12$	
		Surface Area = $2[lb + bh + hl]$	4
		$= 2[26 \times 20 + 20 \times 12 + 12 \times 26]$	1
		= 2144	1
	f)	Find range and coefficient of range for the data:	02
		120, 50, 90, 100, 180, 200, 150, 40, 80	
	Ans	Range = $L - S$	
		= 200 – 40	1
		$= 160$ coefficient of range = $\frac{L-S}{}$	
		coefficient of range = $\frac{L-S}{L+S}$	
		$=\frac{200-40}{}$	1/2
		$-\frac{200+40}{200}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 22	2103	
Q. No.	Sub Q.N.	Answers	Markir Schem	_
1.	f) g) Ans	coefficient of range = 0.667 If coefficient of variation of a distribution is 75% and standard deviation is 24, find its mean. coefficient of variation = $\frac{\sigma}{x} \times 100$ $75 = \frac{24}{x} \times 100$ $x = \frac{24 \times 100}{75}$	% 02 % 1/2	
2.	a)	Attempt any three of the following: If $A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix}$. Find X such that $2X + 3A - 4B = I$.	1 12 04	
	Ans	$2X + 3A - 4B = I$ $2X + 3\begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix} - 4\begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 9 & -3 \\ 6 & 12 \end{bmatrix} - \begin{bmatrix} 4 & 8 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X + \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $2X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & -11 \\ 18 & 12 \end{bmatrix}$	1 1 1	
		$2X = \begin{bmatrix} -4 & 11 \\ -18 & -11 \end{bmatrix}$ $\therefore X = \begin{bmatrix} 1 & -4 & 11 \\ 2 & -18 & -11 \end{bmatrix} \qquad OR \qquad X = \begin{bmatrix} -2 & \frac{11}{2} \\ -11 & -9 & \frac{1}{2} \end{bmatrix}$	1	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	b)	Resolve into partial fractions $\frac{x^2+1}{x(x^2-1)}$	04
	Ans	$\frac{x^2+1}{x(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$	1/2
		$\therefore x^{2} + 1 = A(x-1)(x+1) + B(x)(x-1) + C(x)(x+1)$ Put $x = 0$ $\therefore 0 + 1 = A(0-1)(0+1)$	
		A = -1 Put $x = -1$	1
		$(-1)^{2} + 1 = B(-1)(-1-1)$ $B = 1$	1
		Put $x = 1$ $\therefore 1^2 + 1 = C(1)(1+1)$	1
		$\frac{C=1}{x} = \frac{x_2+1}{x(x+1)(x-1)} = \frac{-1}{x} + \frac{1}{x+1} + \frac{1}{x-1}$	1/2
	c)	The voltage in an electric circuit are related by following equations:	04
		$V_1 + V_2 + V_3 = 9$; $V_1 - V_2 + V_3 = 3$; $V_1 + V_2 - V_3 = 1$ find V_1 , V_2 and V_3 by using Cramer's rule. $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	
		$D = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1) = 4$	1
		$D_{V} = \begin{vmatrix} 9 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 9(1-1)-1(-3-1)+1(3+1) = 8$ $\therefore V = \frac{D_{V}}{D} = \frac{8}{4} = 2$	
			1
		$D_{\frac{V}{2}} = \begin{vmatrix} 1 & 9 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(-3-1)-9(-1-1)+1(1-3)=12$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER - 18 EXAMINATION

Sub	ject Na	me: Basic Mathematics	Model Answer	Subject Code:	22103	
Q. No.	Sub Q.N.		Answers			Marking Scheme
2.	c)	$\therefore V_2 = \frac{D_{V_2}}{D} = \frac{12}{4} = 3$ $D_{V_3} = \begin{vmatrix} 1 & 1 & 9 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1(-1-3)-1(1-1)$ $\therefore V_3 = \frac{D_{V_3}}{D} = \frac{16}{4} = 4$	-3)+9(1+1)=16			1

d)	Calculate the mean deviation about the mean of the following data:	04
		0-1

3,	6, 5), 1	', I	Ο,	12,	15,	18.

Ans

X_i	$d_i = x_i - \overline{x}$	$\left d_i ight $
3	-6.5	6.5
5	-4.5	4.5
6	-3.5	3.5
7	-2.5	2.5
10	0.5	0.5
12	2.5	2.5
15	5.5	5.5
18	8.5	8.5
$\sum x_i = 76$		$\sum d_i = 34$

where	Mean	x = 1	$\sum x_i$	$=\frac{76}{}$
			N	8
		_ r =	95	

$\lambda = 0.3$	
\therefore Mean deviation about mean = $\frac{\sum d_i }{ d_i }$	
N	
34 4.25	1
= = 4.25	
8	

3.	Attempt any three of the following:	12
•		04

	The input sally value of the following v	
a)	Without using calculator find the value of	
	$\cos 570^{\circ} \sin 510^{\circ} + \sin (-330^{\circ}) \cos (-390^{\circ})$	

Ans	$\cos 570^{0} = \cos \left(6 \times 90^{0} + 30^{0} \right)$
-----	---

2

1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

	Sub		Marking
Q. No.	Q. N.	Answers	Scheme
3.	a)	$\cos 570^0 = -\cos 30^0 = -\frac{\sqrt{3}}{2}$	1/2
		$\sin 510^0 = \sin \left(6 \times 90^0 - 30^0 \right)$	1/2
		$= \sin 30^0 = \frac{1}{2}$	1/2
		$\sin\left(-330^{0}\right) = -\sin\left(330^{0}\right)$,-
		$= -\sin\left(4 \times 90^{0} - 30^{0}\right) = -\left(-\sin 30^{0}\right) = \frac{1}{2}$	1/2
		$\cos\left(-390^{\circ}\right) = \cos 390^{\circ}$	1/2
		$=\cos(4\times90^0+30^0)=\cos 30^0=\frac{\sqrt{3}}{2}$	1/2
		$\therefore \cos 570^{0} \sin 510^{0} + \sin \left(-330^{0}\right) \cos \left(-390^{0}\right)$	
		$= \left(-\frac{\sqrt{3}}{2}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{\sqrt{3}}{2}\right)$	1
		= 0	1
	b)	Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$	04
	Ans	LHS = $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 4\theta + \cos 2\theta}$ $- \frac{2 \sin 2\theta \cdot \cos 2\theta + \sin 2\theta}{2 \cos 2\theta + \sin 2\theta}$	2
		$= \frac{1}{2\cos^2 2\theta + \cos 2\theta}$ $= \frac{\sin 2\theta (2\cos 2\theta + 1)}{\cos 2\theta (2\cos 2\theta + 1)}$	1
		$= \tan 2\theta$	1
	c)	Prove that $\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A$	04
	Ans	$LHS = \frac{\sin 3A - \sin A}{\cos 3A + \cos A}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	--------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	c)	$= \frac{2 \cdot \cos\left(\frac{3A+A}{2}\right) \cdot \sin\left(\frac{3A-A}{2}\right)}{2 \cdot \cos\left(\frac{3A+A}{2}\right) \cdot \cos\left(\frac{3A-A}{2}\right)}$	2
		$= \frac{2\cos 2A \cdot \sin A}{2\cos 2A \cdot \cos A}$	1
		$= \tan A$ $= RHS$	
	d)	Prove that $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \cot^{-1} 2$ $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9}$	04
	Ans	$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}$ $= \tan^{-1}\left[\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \times \frac{2}{9}}\right]$	2
		$= \tan^{-1} \left(\frac{1}{2}\right)$	1
		$= \cot^{-1} 2$ $\therefore \tan^{-1} \frac{1}{-} + \tan^{-1} \frac{2}{-} = \cot^{-1} 2$	1
		4 9	
4.		Attempt any three of the following:	12
	a)	Find x and y if	04

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

	,	inc. busic Muthermatics induct Answer Subject code.	
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a) Ans	$ \begin{cases} 4 \begin{bmatrix} 1 & 2 & 0 \\ -2 \begin{bmatrix} 1 & 3 & -1 \end{bmatrix} \\ 0 & = \begin{bmatrix} x \\ 1 & 2 & 0 \end{bmatrix} \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} y \\ -1 \end{bmatrix} \\ 0 & = \begin{bmatrix} x \\ 2 \end{bmatrix} \\ 2 & = \begin{bmatrix} x \\ 1 & 2 & 0 \end{bmatrix} \\ 2 & = \begin{bmatrix} x \\ 1 & 2 & 0 \end{bmatrix} \\ 2 & = \begin{bmatrix} x \\ 1 & 2 & 1 \end{bmatrix} $	
		$\begin{bmatrix} 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$ $\begin{bmatrix} 4 & 8 & 0 \\ -1 \end{bmatrix} \begin{bmatrix} 2 & 6 & -2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}$ $\begin{bmatrix} 8 & -4 & 12 \end{bmatrix} \begin{bmatrix} 4 & -6 & 8 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$	1
		$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} x \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	1
		$\begin{bmatrix} 4+0-2 \\ 8+0-4 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$	1
		$\begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\therefore x = 2, y = 4$	1
	b)	Resolve into partial fractions $\frac{2x+1}{(x-1)(x^2+1)}$	04
	Ans	$\frac{2x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1}$ $\therefore 2x+1 = (x^2+1)A + (x-1)(Bx+C)$	1/2
		Put $x = 1$ $\therefore 2(1) + 1 = (1^2 + 1) A$ $\therefore 3 - 2 A$	
		$\therefore 3 = 2A$ $\therefore A = \frac{3}{2}$	1
		Put $x = 0$, $\therefore 2(0) + 1 = (0+1)A + (0-1)(B(0) + C)$ $\therefore 1 = A - C$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$\therefore 1 = \frac{3}{2} - C$ $\therefore C = \frac{1}{2}$ Put $x = -1$, $\therefore 2(-1) + 1 = ((-1)^2 + 1)A + (-1 - 1)(B(-1) + C)$ $\therefore -1 = 2A + 2B - 2C$ $\therefore -1 = 2 \left(\frac{3}{2}\right) + 2B - 2\left(\frac{1}{2}\right)$ $\therefore -1 = 3 + 2B - 1$ $\therefore B = -\frac{3}{2}$ $2x + 1$ $2x + 1$ 3 $-3x + 1$ $2x + 2$ 3 $-3x + 1$ 3 $-3x + 3$ 3 $-3x + 3$ 3 $-3x + 3$ 3	1
		$\therefore \frac{2x+1}{(x-1)(x^2+1)} = \frac{\frac{3}{2}}{x-1} + \frac{-\frac{3}{2}x+\frac{1}{2}}{x^2+1} \qquad OR$ $\frac{2x+1}{(x-1)(x^2+1)} = \frac{1}{2} \left[\frac{3}{x-1} + \frac{-3x+1}{x^2+1} \right]$	1/2
	c) Ans	Prove that $\cos 20^{\circ} .\cos 40^{\circ} .\cos 60^{\circ} .\cos 80^{\circ} = \frac{1}{16}$ $\cos 20^{\circ} .\cos 40^{\circ} .\cos 60^{\circ} .\cos 80^{\circ} = \frac{1}{2} (2\cos 20^{\circ} \cos 40^{\circ}) .(\frac{1}{2}) \cos 80^{\circ}$	1/2
		$= \frac{1}{4} \lfloor \cos(20^{\circ} + 40^{\circ}) + \cos(20^{\circ} - 40^{\circ}) \rfloor \rfloor \cos 80^{\circ}$	1/2
		$= \frac{1}{4} \lfloor \cos(60^\circ) + \cos(-20^\circ) \rfloor \rfloor \cos 80^\circ$ $= \frac{1}{4} \lfloor \frac{1}{2} \cos 80^\circ + \cos 20^\circ \cos 80^\circ \rfloor$	1/2
		$=\frac{1}{4}\left[\frac{1}{2}\cos 80^{\circ} + \frac{1}{2}\left(2\cos 20^{\circ}\cos 80^{\circ}\right)\right]$	1/2
		$= \frac{1}{8} \lfloor \cos 80^{\circ} + \cos(20^{\circ} + 80^{\circ}) + \cos(20^{\circ} - 80^{\circ}) \rfloor \rfloor$ $= \frac{1}{8} \lfloor \cos 80^{\circ} + \cos(100^{\circ}) + \cos(-60^{\circ}) \rfloor \rfloor$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code:

22103

	,	ine. Dasic Mathematics <u>Model Allswei</u> Subject Code.	
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	$\cos 20^{0}.\cos 40^{0}.\cos 60^{0}.\cos 80^{0} = \frac{1}{8} \left \cos 80^{\circ} + \cos(180 - 80^{\circ}) + \frac{1}{2}\right $	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} - \cos(80^{\circ}) + \frac{1}{2}\right]$	1/2
		$=\frac{1}{16}$	1/2
	d)	If $\tan \frac{\theta}{2} = \frac{2}{3}$ find the value of $2\sin\theta + 3\cos\theta$.	04
	Ans	$\frac{2\sin\theta + 3\cos\theta}{2\tan\theta} \qquad \left(\frac{1-\tan^2\theta}{1-\tan^2\theta}\right)$	
		$=2\left\lfloor \frac{2}{1+\tan^2\frac{\theta}{2}} \right\rfloor + 3\left\lfloor \frac{2}{1+\tan^2\frac{\theta}{2}} \right\rfloor$	2
		$=2\left \frac{2\times\frac{2}{3}}{\left(\frac{2}{3}\right)^{2}}\right +3\left \frac{1-\left(\frac{2}{3}\right)^{2}}{\left(\frac{2}{3}\right)^{2}}\right $ $\left(1+\left(\frac{3}{3}\right)\right)\left(1+\left(\frac{3}{3}\right)\right)$	1
		=3	1
	e)	If A and B are obtuse angles and $\sin A = \frac{5}{13}$ and $\cos B = -\frac{4}{5}$ then find $\sin (A + B)$.	04
	Ans	$\cos^2 A = 1 - \sin^2 A$ $= 1 - \left(\frac{5}{13}\right)^2$ $= 1 - \frac{25}{169} = \frac{144}{169}$ $\cos A = \pm \frac{12}{13}$ $\therefore \cos A = -\frac{12}{13} (\therefore A \text{ is obtuse angle})$ $\sin^2 B = 1 \cos^2 B$	
		$\sin^2 B = 1 - \cos^2 B$ $= 1 - \left(-\frac{4}{5}\right)^2$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q.N.		Scheme
4.	e)	$\sin^2 B = 1 - \frac{16}{25} = \frac{9}{25}$ $\sin B = \pm \frac{3}{25}$	
		$\therefore \sin B = \frac{3}{5} \qquad (\because A \text{ is obtuse angle})$	1
		$\therefore \sin\left(A+B\right) = \sin A \cdot \cos B + \cos A \cdot \sin B$ $= \left(\frac{5}{13}\right) \times \left(-\frac{4}{5}\right) + \left(-\frac{12}{13}\right) \times \left(\frac{3}{5}\right)$	1
		$= -\frac{56}{65}$	1
5.		Attempt any two of the following:	12
	a)	Attempt the following:	06
	i)	Find the length of the perpendicular from the point $(5,4)$ on the straigth line $2x + y = 34$.	03
	Ans	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{2(5) + 1(4) - 34}{\sqrt{(2)^2 + (1)^2}} \right $	2
		$= \left \frac{10 + 4 - 34}{\sqrt{5}} \right $ $= \frac{20}{\sqrt{5}} \text{OR} 8.94$	1
	ii)	Find the equation of the line passing through $(3,-4)$ and having slope $\frac{3}{2}$	03
	Ans	Point = $(x_1, y_1) = (3, -4)$ & slope = $\frac{3}{2}$ \therefore equation of line is,	
		$y - y_1 = m(x - x_1)$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	a)ii)	$\therefore y - (-4) = \frac{3}{2}(x - 3)$ $\therefore 2(y + 4) = 3(x - 3)$	1
		$\therefore 2(y+4) = 3(x-3)$	1
		$\therefore 3x - 2y - 17 = 0$	1
		A.,	06
	b) i)	Attempt the following:	03
	1)	Find the equation of line passing through $(3,4)$ and perpendicular to the line	03
		2x - 4y + 5 = 0.	
	Ans	Point = $(x_1, y_1) = (3, 4)$	
		Slope of the line $2x-4y+5=0$ is,	
		$m = -\frac{a}{b} = -\frac{2}{-4} = \frac{1}{2}$	1
		∴ Slope of the required line is,	
		$m = -\frac{1}{2} = -2$	1
		$\frac{m}{m}$	
		∴ equation is,	
		$y - y_1 = m'(x - x_1)$	
		$\therefore y-4=-2(x-3)$	1
		$\therefore 2x + y - 10 = 0$	1
	ii)	Find the acute angle between the lines $3x - y = 4$ and $2x + y = 3$.	03
	Ans	For $3x - y = 4$,	
		slope $m_1 = -\frac{a}{b} = -\frac{3}{-1} = 3$	1/2
		For $2x + y = 3$,	
		slope $m_2 = -\frac{a}{b} = -\frac{2}{1} = -2$	1/2
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{m_1 - m_2} \right $	
		$\therefore \tan \theta = \left \frac{m_1 + m_2}{1 + m_1 m_2} \right $	
			1
		$= \frac{3 - (-2)}{1 + 3 \times (-2)}$	_
		= 1	1/2
]		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 2210)3
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	b) ii)	$\therefore \theta = \tan^{-1}(1)$	
		$\therefore \theta = \frac{\pi}{4} \text{ or } 45^0$	1/2
	c)	Attempt the following:	06
	i)	Find the capacity of a cylindrical water tank whose radius is 2.1m and length is 5m.	03
	Ans	Let $r = 2.1 \& h = 5$	
		capacity of a cylindrical water tank = volume of cylinder	
		$\therefore V = \pi r^2 h$	2
		$=\frac{22}{7}\times(2.1)^2\times5$	
		= 69.3	1
		Enternal dimensions of a way don subsiders 20 and 25 and 20 and If the thickness of way d	
	ii)	External dimensions of a wooden cuboid are 30 cm× 25 cm× 20 cm. If the thickness of wood is 2 cm all round. Find the volume of the wood contained in the cuboid formed.	03
	Ans	External length of the cuboid = $30 cm$	
		External breadth of the cuboid = $25 cm$	
		External height of the cuboid = $20 cm$	
		External volume of the cuboid = $(30 \times 25 \times 20)$ cm ³	1
		$=15000 cm^3$	
		Internal volume of the cuboid = $(26 \times 21 \times 16) cm^3$	
		= 8736 cm ³ Volume of wood = External Volume – Internal Volume	1
		$= 15000 \text{ cm}^3 - 8736 \text{ cm}^3$	
		$=6264 \ cm^3$	1
6.		Attempt any two of the following:	12
	a)	Calculate the mean, standard deviation and co-efficient of variance of the following data:	06
		Class Interval 0-10 10-20 20-30 30-40 40-50 	
		Frequency 03 05 08 03 01	
	j		_

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	--------------	---------------	-------

Q.	Sub									Marking		
No.	Q.N.	S								Scheme		
6.	a)											
			Class Interval x_i f_i $f_i x_i$ $d_i = \frac{x_i - a}{h}$ $f_i d_i$ d_i^2 $f_i d_i^2$									
			0-10	5	3	15	-2	-6	4	12	-	
			10-20	15	5	75	-1	-5	1	5	-	
			20-30	25	8	200	0	0	0	0	-	3
			30-40	35	3	105	1	3	1	3		
			40-50	45	1	45	2	2	4	4		
					20	440		-6		24		
		S.D. = σ	$= \frac{\sum f_i x_i}{N} = \frac{440}{20} = \frac{1}{20}$ $= \sqrt{\frac{\sum f_i d_i^2}{N} - (\frac{\sum f_i d_i^2}{N} - \frac{\sum f_i d_i^2}{$	$\left(\frac{\sum f_i d_i}{N}\right)$	$\frac{1}{1} \times h$							1
			$= \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)^2} \times 10$ $= 10.54$							1		
		Coeffici		x								
			$= \frac{10.54}{22} \times 100$ $= 47.91$								1	
						0	R					

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

	Sub									1.4	المعاجة.
). O.	Q.N.				Ansv	vers					larki chen
•	a)	Cla Inter		X_i	f_i	$f_i x_i$	X_i^2	$f_i x_i^2$			06
		0-1	10	5	3	15	25	75			
		10-	20	15	5	75	225	1125			
		20-	30	25	8	200	625	5000			3
		30-	40	35	3	105	1225	3675			
		40-	50	45	1	45	2025	2025			
					20	440		11900)		
		S.D. $\sigma = \sqrt{\frac{\sum f_i x_i^2}{N}}$ $= \sqrt{\frac{11900}{20}}$ $\sigma = 10.54$ Coefficient of vari	ance $=\frac{\sigma}{x}$	×100 0.54 22 ×100							1
		$\sigma = 10.54$	ance $=\frac{\sigma}{x}$	$\frac{0.54}{22} \times 100$							1
	b)	$\sigma = 10.54$	ance $= \frac{\underline{\sigma}}{x}$ $= \frac{10}{x}$ $= 47$	$\frac{0.54}{22} \times 100$							1
	b) i)	σ = 10.54 Coefficient of vari	ance $= \frac{\underline{\sigma}}{x}$ $= \frac{10}{x}$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$	0.54 22 7.91	range froi	n the follo	owing data:				1
		σ = 10.54 Coefficient of variance Attempt the follow Calculate the rang Marks	ance $= \frac{\underline{\sigma}}{x}$ $= \frac{10}{x}$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$ $= 47$	0.54 22 7.91 Cficient of	30-39	40-49	50-59	60-69			1
	i)	$\sigma = 10.54$ Coefficient of variable of v	ance $=\frac{\underline{\sigma}}{x}$ $=\frac{10}{x}$ $=47$ $=47$ wing: e and coef	0.54 22 7.91 			_			. —	1
		σ = 10.54 Coefficient of variance Attempt the follow Calculate the rang Marks	ance $=\frac{G}{x}$ $=\frac{10}{x}$ =47 ving: e and coef	0.54 22 7.91 Cficient of	30-39	40-49	50-59	60-69	59.5-69		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	---------------------	---------------	-------

Q. No.	Sub Q.N.			Answers	Mar Sche	king eme
6.	b)	Range = $L-S$				
		=69.5-9	9.5			1
		= 60				1
		Coefficient of ra	ange = $\frac{L-S}{L+S}$			
			$=\frac{69.5-9.5}{69.5+9.5}$			1
			= 0.76			1
	ii)	The data of run	scored by two batsmen A	and B in five one day matches is given be	elow:	03
		Batsman	Average run scored	S.D.		
		A	44	5.1		
		В	54	6.31		
		State which bats	sman is more consistent?			
	Ans	For Batsman A				
		$C.V = \frac{\sigma}{2} \times 100$				
		X				
		$=\frac{5.1}{44}\times100$				
		=11.59				1
		For Batsman B				
		$C.V = \frac{\sigma}{2} \times 100$				
		<i>x</i> 6.31				
		$=\frac{6.31}{54}\times100$)			
		=11.69				1
		C.V of A < $C.V$				
		∴ Batsman A is	s more consistent.			1
1						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	---------------------	---------------	-------

Q. No.	Sub Q.N.	Answers	Marking Scheme
6.	c)	Solve the following equations by matrix inversion method:	06
	Ans	$\begin{bmatrix} x + 3y + 3z = 12, & x + 4y + 4z = 15, & x + 3y + 4z = 13 \\ \text{Let } A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 12 \\ 15 \\ 13 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
		$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{vmatrix}$	
		A = 1(16-12) - 3(4-4) + 3(3-4)	
		$ A = 4 - 0 - 3$ $\therefore A = 1 \neq 0$	1
		$\therefore A^{-1} \text{ exists}$	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 4 & 4 & 1 & 4 & 1 & 4 \\ 3 & 4 & 1 & 4 & 1 & 3 \\ 3 & 3 & 1 & 3 & 1 & 3 \\ 3 & 4 & 1 & 4 & 1 & 3 \\ 3 & 3 & 1 & 3 & 1 & 3 \\ 4 & 4 & 1 & 4 & 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 4 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix}$	
			1
		$ \begin{bmatrix} 0 & 1 & 1 \\ 4 & 0 & -1 \end{bmatrix} $	
		Matrix of cofactors = $\begin{bmatrix} -3 & 1 & 0 \end{bmatrix}$	1
		OR $C_{11} = + \begin{vmatrix} 4 & 4 \\ 3 & 4 \end{vmatrix} = 16 - 12 = 4, C_{12} = - \begin{vmatrix} 1 & 4 \\ 1 & 4 \end{vmatrix} = -(4 - 4) = 0$ $C_{13} = + \begin{vmatrix} 1 & 4 \\ 1 & 3 \end{vmatrix} = 3 - 4 = -1, C_{21} = - \begin{vmatrix} 3 & 3 \\ 3 & 4 \end{vmatrix} = -(12 - 9) = -3$ $C_{22} = + \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = 4 - 3 = 1, C_{23} = - \begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix} = -(3 - 3) = 0$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
---------------------------------	--------------	---------------	-------

	C 1			
Q. No.	Sub Q. N.	Answers		Marking cheme
6.	c)	$\begin{vmatrix} C_{31} = + \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} = 12 - 12 = 0, \ C_{32} = - \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = -(4 - 3) = -1$ $\begin{vmatrix} C_{33} = + \begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = 4 - 3 = 1,$ $\begin{bmatrix} 4 & 0 & -1 \end{bmatrix}$		1
		Matrix of cofactors = $\begin{bmatrix} 4 & 0 & -1 \\ -3 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$		1
		$Adj.A = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$		1/2
		$A^{-1} = \frac{1}{ A } A dj.A$ $= \frac{1}{1} \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ $\therefore X = A^{-1}B$		1/2
		$\begin{bmatrix} x \\ y \\ = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 12 \\ 15 \\ z & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ z \end{bmatrix}$		
		$\begin{bmatrix} x \\ y \\ = \begin{bmatrix} 48 - 45 + 0 \\ 0 + 15 - 13 \end{bmatrix} \\ \begin{bmatrix} -12 + 0 + 13 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} x \\ 3 \end{bmatrix}$		1
		$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 3 \\ 2 \\ 1 \end{vmatrix}$ $\therefore x = 3, y = 2, z = 1.$		1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Important Note

In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the
sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the
method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of
marking.

22103

11819

3 Hours / 70 Marks

Seat No.				

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

Marks

1. Attempt any five of the following:

10

- a) Evaluate log_3^{81} .
- b) Find the area of the triangle whose vertices are (4, 3) (1, 4) and (2, 3).
- c) Find the value of $\sin (15^{\circ})$ using compound angles.
- d) Find the area of rhombus whose diagonals are 6 cm and 9 cm.
- e) The length, breadth and height of a cuboid are 8 cm, 11 cm and 15 cm respectively. Find the total surface area.
- f) Find the range of the data:

14, 18, 22, 35, 42, 44, 8, 7, 5 and 2.

g) If mean is 34.5 and standard deviation is 5 find the coefficient of variance.

Marks

12

12

12

2. Attempt any three of the following:

a) If
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$
 prove that $A^2 = I$.

- b) Resolve into partial fractions : $\frac{x^2 + 23x}{(x+3)(x^2+1)}$.
- c) Solve the following equations by Cramer's rule:

$$x + y + z = 2$$
$$y + z = 1$$
$$x + z = 3$$

d) Find mean of the following data:

Class-Interval	0 - 10	10 - 20	20 - 30	30 - 40	40 – 50
Frequency	3	5	8	3	1

- **3.** Attempt **any three** of the following:
 - a) If $\tan A = \frac{1}{2} \tan B = \frac{1}{3}$, find the value of $\tan (A + B)$.

b) Prove:
$$\tan \left(\frac{\pi}{4} + A\right) = \frac{\cos A + \sin A}{\cos A - \sin A}$$
.

- c) Prove: $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A.$
- d) Prove: $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$.
- **4.** Attempt **any three** of the following :
 - a) If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \end{bmatrix}$ show that $A^2 8A$ is a scalar matrix. $\begin{bmatrix} 4 & 4 & 2 \end{bmatrix}$

Marks

12

12

b) Resolve into partial fraction :
$$\frac{3x-1}{(x-4)(x+1)(x-1)}$$
.

- c) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$.
- d) Prove : $\sin A \cdot \sin(60 A) \cdot \sin(60 + A) = \frac{1}{2} \sin 3A$.

e) Prove :
$$\tan^{-1} \left(\frac{1}{7}\right) + \tan^{-1} \left(\frac{1}{13}\right) = \cos^{-1} \left(\frac{9}{2}\right)$$
.

5. Attempt any two of the following:

- a) Attempt the following:
 - i) Find the equation of straight line passes through the points (-4, 6) and (8, -3).
 - ii) Find the equation of line passing through the point (2, 5) and through the intersection of the lines x + y = 0 and 2x y = 9.
- b) Attempt the following:
 - i) Find the acute angle between the lines 3x + 2y + 4 = 0 and 2x 3y 7 = 0.
 - ii) Find the distance between the lines 3x + 2y = 5 and 6x + 4y = 6.
- c) Attempt the following:
 - i) A square grassy plot is of side 100 metre. It has a gravel path 10 metres wide all round it on the inside. Find the area of path.
 - ii) The volume of cube is 1000 cm³. Find its total surface area.

6. Attempt **any two** of the following:

a) Find mean, standard deviation and coefficient of variance of the following data :

Class-Interval	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	3	5	8	3	1

- b) Attempt the following:
 - i) Find mean for the following data:

Class-Interval	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Frequency	4	6	10	18	9	3

Marks

ii) The two sets of observation are given below:

Set – I	Set – II
$\overline{x} = 82.5$	$\bar{x} = 48.75$
$\sigma = 7.3$	$\sigma = 8.35$

Which of the two sets is more consistent?

c) Solve the following equations by matrix inversion method:

$$x + 3y + 2z = 6$$

$$3x - 2y + 5z = 5$$

$$2x - 3y + 6z = 7$$
.

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any five of the following:	10
	a)	Evaluate log ₃ 81	02
	Ans	$\log_3 81$	02
		$=\log_3(3)^4$	1/2
		$=4\log_3 3$	1/2
		=4(1)	1/2
		=4	1/2
			, -
		<u>OR</u>	
		$\log_3 81 \qquad OR$ $= \log 81$ Let log $81 = x$	
		$= \frac{\log 31}{\log 3}$ Let $\log_3 81 = x$	1/2
		$\log(3)^4$	
		$=\frac{\log(3)}{\log 3}$ 3 ^x = 81	1/2
		410g2	
		$=\frac{4\log 3}{\log 3}$ $3^x = 3^4$	1/2
		=4 $x=4$	1/2
	b)	Find the area of the triangle whose vertices are $(4,3)(1,4)$ and $(2,3)$.	02
	Ans	Let $(x_1, y_1) = (4,3), (x_2, y_2) = (1,4)$ and $(x_3, y_3) = (2,3)$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics

WINTER-18 EXAMINATION Model Answer

Subject Code: 22103

	•	ZZ10	9
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	b)	$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} 4 & 3 & 1 \\ 1 & 4 & 1 \\ 2 & 3 & 1 \end{vmatrix}$ $= \frac{1}{2} [4(4-3) - 3(1-2) + 1(3-8)] $	1
		2 ^L	1
	c)	Find the value of $\sin(15^0)$ using compound angles	02
	Ans	$\sin\left(15^{0}\right)$	
		$=\sin\left(45^{0}-30^{0}\right)$	1/2
		$= \sin 45^{0} \cos 30^{0} - \cos 45^{0} \sin 30^{0}$	1/2
		$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$	1/2
		$= \frac{\sqrt{3} - 1}{2\sqrt{2}} \text{or} 0.2588$ $\underline{\mathbf{OR}}$	1/2
		$\sin\left(15^{0}\right)$	
		$= \sin(60^{0} - 45^{0})$ $= \sin 60^{0} \cos 45^{0} - \cos 60^{0} \sin 45^{0}$	1/2
			1/2
		$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}\right)$	1/2
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$ or 0.2588	1/2
	d)	Find the area of rhombus whose diagonals are 6 cm and 9 cm.	02
	Ans	Area of rhombus = $\frac{1}{2} (d_1 \times d_2)$	
		$=\frac{1}{2}(6\times9)$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	d)	Area of rhombus = 27	1
	e) Ans	The length , breadth and height of a cuboid are 8 cm,11 cm and 15 cm respectively. Find the total surface area. Let $l=8$, $b=11$, $h=15$ Total surface Area of a cuboid = $2[lb+bh+hl]$	02
		$= 2[8 \times 11 + 11 \times 15 + 15 \times 8]$	1
		= 746	1
	f)	Find the range of the data: 14, 18, 22, 35, 42, 44, 8, 7, 5 and 2	02
	Ans	Range = $L - S$ = $44 - 2$	1
		= 42	1
	g) Ans	If mean is 34.5 and standard deviation is 5 find the coefficient of variance. σ	02
	Alis	Coefficient of variance = $\frac{6}{2} \times 100$ = $\frac{5}{34.5} \times 100$ = 14.493	1
		— T 1.175	
2.		Attempt any three of the following:	12
	a)	If $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ prove that $A^2 = I$	04
	Ans	$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 2 & -3 & 4 \end{bmatrix}$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2.	a)	$A^2 = AA$	
		$\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$	
		$= \begin{vmatrix} 4 & -3 & 4 \end{vmatrix} \begin{vmatrix} 4 & -3 & 4 \end{vmatrix}$	
		$= \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \end{bmatrix}$ $\begin{bmatrix} 3 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \end{bmatrix}$	
		$\begin{bmatrix} 0+4-3 & 0-3+3 & 0+4-4 \\ = 0-12+12 & 4+9-12 & -4-12+16 \end{bmatrix}$	
		$= \begin{vmatrix} 0 - 12 + 12 & 4 + 9 - 12 & -4 - 12 + 16 \end{vmatrix}$	2
		0-12+12 3+9-12 -3-12+16	
		$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	2
		=I	
		$\therefore A^2 = I$	
		2	
	• \	Resolve into partial fractions: $\frac{x^2 + 23x}{(x+3)(x^2+1)}$	
	b)		04
		$\frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+1}$	
	Ans		1/2
		$\therefore x^2 + 23x = (x^2 + 1)A + (x + 3)(Bx + C)$	
		Put $x = -3$	
		$(-3)^2 + 23(-3) = ((-3)^2 + 1) A$	
		∴-60 = 10 <i>A</i>	1
		$\therefore A = -6$	1
		Put $x = 0$	
		$\therefore 0 = (1)A + (3)(0+C)$	
		$\therefore 0 = -6 + 3C$	1
		$\therefore C = 2$	
		Put $x = 1$	
		$\therefore 24 = 2(-6) + 4B + 4(2)$	1
		$\therefore B = 7$	
		$\therefore \frac{x^2 + 23x}{(x+3)(x^2+1)} = \frac{-6}{x+3} + \frac{7x+2}{x^2+1}$	1/2
		$(x+3)(x^2+1)$ $x+3$ x^2+1	

(Autonomous) /IFC - 27001 - 2013 Cer

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

,	,	ine. Dasic Mathematics <u>Model Allswel</u> Subject code.	
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	c)	Solve the following equations by Cramer's rule: x + y + z = 2 y + z = 1 x + z = 3	04
	Ans	$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix}$ $= 1(1-0)-1(0-1)+1(0-1)=1$	1
		$D_{x} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 0 & 1 \end{vmatrix}$ $= 2(1-0)-1(1-3)+1(0-3)=1$ $\therefore x = \frac{D_{x}}{D} = \frac{1}{1} = 1$	1
		$D_{y} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix}$ $= 1(1-3) - 2(0-1) + 1(0-1) = -1$ $\therefore y = \frac{D_{y}}{D} = \frac{-1}{1} = -1$	1
		$D_z = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{vmatrix}$ $= 1(3-0)-1(0-1)+2(0-1)=2$ $\therefore z = \frac{D_z}{D} = \frac{2}{1} = 2$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nar	ne: Basic Mathematic	cs	<u>Mo</u>	del Answe	<u>er</u>		Subject Code:	22103	
Q. No.	Sub Q. N.				Ans	wers				Marking Scheme
2.	d)	Find mean of the fol	llowing	data:						04
		Class - Interval	0-10	10-20	20-30	30-40	40-50			
		Frequency	3	5	8	3	1			
	Ans			Class- terval	X_i	f_i	$f_i x_i$			
				0-10	5	3	15			
			1	10-20	15	5	75			2
			2	20-30	25	8	200			2
				30-40	35	3	105			
			4	10-50	45	1	45			
						20	440			
		Mean $\overline{x} = \frac{\sum f_i x_i}{N}$ $\therefore \overline{x} = \frac{440}{20}$ $\therefore x = 22$								1 1
3.		Attempt any three	of the fo	ollowing:						12
	a)	If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{2}$	$=\frac{1}{3}$, find	l the valu	e of tan (A	(A+B)				04
	Ans	$\tan\left(A+B\right) = \frac{\tan A}{1-\tan A}$		- 3						
		$=\frac{\frac{1}{2}}{1-\left(\frac{1}{2}\right)}$	$\frac{1}{3}$ $\left(\frac{1}{3}\right)$							2
		=1								2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No. Sub Q.N. Prove: $\tan\left(\frac{\pi}{4} + A\right) = \frac{\cos A + \sin A}{\cos A - \sin A}$ Ans $\tan\left(\frac{\pi}{4} + A\right) = \frac{\tan \frac{\pi}{4} + \tan A}{\tan A} = \frac{4}{1 - \tan A} = \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}} = \frac{\cos A + \sin A}{\cos A - \sin A}$ $= \frac{\cos A + \sin A}{\cos A}$ $= \frac{\cos A + \sin A}{\cos A}$ $= \frac{\cos A - \sin A}{\cos A}$ OR	Marking Scheme 04
No. Q.N. Prove: $\tan\left(\frac{\pi}{4} + A\right) = \frac{\cos A + \sin A}{\cos A - \sin A}$ Ans $\tan\left(\frac{\pi}{4} + A\right) = \frac{\tan \frac{\pi}{4} + \tan A}{\cos A - \sin A}$ $= \frac{4}{1 - \tan \frac{\pi}{4} \tan A}$ $= \frac{1 + \tan A}{1 - \tan A}$ $= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$ $= \frac{\cos A + \sin A}{\cos A}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	Scheme 04
Ans $\tan \left(\frac{\pi}{4} + A\right) = \frac{1 + \tan A}{1 - \tan \frac{\pi}{4}}$ $= \frac{1 + \tan A}{1 - \tan A}$ $= \frac{1 + \sin A}{1 - \tan A}$ $= \frac{1 + \sin A}{1 - \cos A}$ $= \frac{\cos A + \sin A}{\cos A}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	
Ans $ \frac{4}{\tan^{\frac{\pi}{2}} + \tan A} = \frac{4}{1 - \tan^{\frac{\pi}{2}} \tan A} $ $ = \frac{1 + \tan A}{1 - \tan A} $ $ = \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}} $ $ = \frac{\cos A + \sin A}{\cos A - \sin A} $	1
$= \frac{4}{1 - \tan \frac{\pi}{4} \tan A}$ $= \frac{1 + \tan A}{1 - \tan A}$ $= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	1
$1 - \tan A$ $= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	
$= \frac{\cos A}{1 - \frac{\sin A}{\cos A}}$ $= \frac{\cos A + \sin A}{\cos A - \sin A}$	1
$\cos A - \sin A$	1
	1
$\frac{\cos A + \sin A}{\cos A - \sin A}$	
$= \frac{1 + \frac{\sin A}{\cos A}}{1 - \frac{\sin A}{\cos A}}$	1
$= \frac{1 + \tan A}{1 - \tan A}$ $\tan \frac{\pi}{1} + \tan A$	1
$= \frac{4}{1-\tan\frac{\pi}{2}\tan A}$	1
$= \tan\left(\frac{\pi}{4} + A\right)$	1
Prove: $\frac{\sin 4A + \sin 5A + \sin 6A}{\sin 4A + \sin 5A + \sin 6A} = \tan 5A$	
c) Prove: $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$	04

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	Sub		Marking
Q. No.	Q.N.	Answers	Scheme
3.	c)	$\frac{\sin 4A + \sin 5A + \sin 6A}{\cos A}$	
	Ans	$\cos 4A + \cos 5A + \cos 6A$	
		$= \frac{\left(\sin 4A + \sin 6A\right) + \sin 5A}{\left(\cos 4A + \cos 6A\right) + \cos 5A}$	
		$(\cos 4A + \cos 6A) + \cos 5A$	
		$2\sin\left(\frac{4A+6A}{\cos\left(\frac{4A-6A}{\cos\left(\frac{4A-6A}{\cos\left(\frac{AA-6A}{\cos\left(A+6A-6A\right)}{oa}}\right)}}\right)}{(aa-6A-6A)}}}\right)}}\right)}}\right)}}\right)}}}\right)}}}}}}}}}}} \right)}}}}$	
		$=$ $\frac{2}{2}$ $\frac{2}{2}$	2
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right) + \sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right) + \cos 5A}$	
		$= \frac{2\sin 5A\cos(-A) + \sin 5A}{2\cos 5A\cos(-A) + \cos 5A}$	1
		$= \frac{\sin 5A \lceil 2\cos(-A) + 1 \rceil \rfloor}{\cos 5A \lceil 2\cos(-A) + 1 \rceil \rfloor}$	1/2
		$= \tan 5A$	1/2
			72
		.(12) .(33)	
	d)	Prove: $\cos^{-1} \left(\frac{4}{5}\right) + \cos^{-1} \left(\frac{12}{13}\right) = \cos^{-1} \left(\frac{33}{65}\right)$ Let $\cos^{-1} \left(\frac{4}{5}\right) = A$	04
	Ans	Let $\cos^{-1}\left(4\right) = A$	
	AllS	$\left(\overline{5}\right)$	
		$\therefore \cos A = \frac{4}{5}$	
		$\therefore \sin^2 A = 1 - \cos^2 A$	
		$=1-\frac{16}{1}$	
		25	
		$=\frac{9}{27}$	
		$\begin{bmatrix} 25 \\ 3 \end{bmatrix}$	
		$= \frac{9}{25}$ $\therefore \sin A = \frac{3}{5}$ $= \frac{1}{12} = \frac{9}{25}$	1
		$\left \cos^{-1} \left(12 \right) \right _{-R}$	
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		13 $\therefore \sin^2 B = 1 - \cos^2 B$	
		$\therefore \sin^2 B = 1 - \frac{144}{169}$	
		109	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$\therefore \sin^2 B = \frac{25}{169}$	
		$\therefore \sin^2 B = \frac{1}{169}$ $\therefore \sin B = \frac{5}{13}$	1
		$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$ $= \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) - \left(\frac{3}{5}\right) \left(\frac{5}{13}\right)$	1
		$ \begin{array}{c} -\left(\overline{5}\right)\left(\overline{13}\right) \left(\overline{5}\right)\left(\overline{13}\right) \\ = \frac{48}{15} - \frac{15}{15} \end{array} $	1
		$\therefore \cos(A+B) = \frac{33}{3}$	
		$\therefore A + B = \cos^{-1} \left(\begin{array}{c} 65 \\ 33 \end{array} \right)$	1/2
		$= \frac{48}{65} - \frac{15}{65}$ $\therefore \cos(A+B) = \frac{33}{65}$ $\therefore A+B = \cos^{-1} \begin{pmatrix} 33 \\ \overline{65} \end{pmatrix}$ $\therefore \cos^{-1} \begin{pmatrix} 4 \\ \overline{5} \end{pmatrix} + \cos^{-1} \begin{pmatrix} 12 \\ \overline{13} \end{pmatrix} = \cos^{-1} \begin{pmatrix} 33 \\ \overline{65} \end{pmatrix}$	1/2
		<u>OR</u>	
		Let $\cos^{-1} \left(\frac{4}{5} \right) = A$	
		$\therefore \cos A = \frac{1}{5}$ 3 5	
		$\therefore \tan A = \frac{3}{4}$ $A = \tan^{-1} \begin{pmatrix} 3 \\ \overline{4} \end{pmatrix}$ 12	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$ $\cos^{-1}\left(\frac{12}{13}\right) = B$ $\therefore \cos B = \frac{12}{13}$ $\therefore \tan B = \frac{5}{12}$	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$ $\therefore \cos B = \frac{12}{12}$	
		$\therefore \tan B = \frac{13}{5}$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$B = \tan^{-1} \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ $\therefore \cos^{-1} \begin{pmatrix} 12 \\ 13 \end{pmatrix} = \tan^{-1} \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ $L.H.S. = \tan^{-1} \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \tan^{-1} \begin{pmatrix} 5 \\ 12 \end{pmatrix}$ $\begin{pmatrix} 3 & 5 \\ 12 \end{pmatrix}$	1
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \left(\frac{3}{4}\right)\left(\frac{5}{12}\right)} \right)$ $= \tan^{-1} \left(\frac{56}{33}\right)$	1/2
		Let $\tan^{-1} \left(\frac{56}{33} \right) = C$ $\therefore \tan C = \frac{56}{33}$	
		$\therefore \cos C = \frac{33}{65}$ $\therefore C = \cos^{-1} \left(\frac{33}{65} \right)$ (12)	1
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	
4.		Attempt any three of the following: [2, 4, 4]	12
	a)	If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \end{bmatrix}$ show that $A^2 - 8A$ is scalar matrix. $\begin{bmatrix} 4 & 4 & 2 \end{bmatrix}$	04
	Ans	$A^2 - 8A$ $= A.A - 8A$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

	1		
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$ \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \end{bmatrix} -8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \end{bmatrix} $ $ \begin{bmatrix} 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 4 & 2 \end{bmatrix} $ $ \begin{bmatrix} 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 4 & 2 \end{bmatrix} $	
		$ \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \end{bmatrix} \\ \begin{bmatrix} 32 & 32 & 36 \end{bmatrix} = \begin{bmatrix} 32 & 32 & 36 \end{bmatrix} = \begin{bmatrix} 32 & 32 & 36 \end{bmatrix} $ $ \begin{bmatrix} 20 & 0 & 0 \end{bmatrix} $	2+1
		$= \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ $\therefore A^2 - 8A \text{ is scalar matrix}$	1
	b)	Resolve into partial fraction: $\frac{3x-1}{(x-4)(x+1)(x-1)}.$	04
	Ans	$\frac{3x-1}{(x-4)(x+1)(x-1)} = \frac{A}{x-4} + \frac{B}{x+1} + \frac{C}{x-1}$	1/2
		$\therefore 3x - 1 = A(x+1)(x-1) + B(x-4)(x-1) + C(x-4)(x+1)$ Put $x = 4$ $3(4) - 1 = A(4+1)(4-1)$	
		$\therefore 11 = 15A$ $\therefore A = \frac{11}{15}$ Put $x = -1$	1
		3(-1)-1 = B(-1-4)(-1-1) $\therefore -4 = B(-5)(-2)$ $\therefore B = \frac{-2}{-1}$	1
		5 Put $x = 1$ $3(1) -1 = C(1-4)(1+1)$	
		$\therefore 2 = C(-3)(2)$ $\therefore C = \frac{-1}{3}$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$\therefore \frac{3x-1}{(x-4)(x+1)(x-1)} = \frac{\frac{11}{15}}{x-4} + \frac{\frac{-2}{5}}{x+1} + \frac{\frac{-1}{3}}{x-1}$	1/2
	c)	Prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$	04
	Ans	$\cos 20^{0} \cos 40^{0} \cos 60^{0} \cos 80^{0} = \frac{1}{2} (2 \cos 20^{\circ} \cos 40^{\circ}) \cdot (\frac{1}{2}) \cos 80^{\circ}$	1/2
		$= \frac{1}{4} \lfloor \cos(20^{\circ} + 40^{\circ}) + \cos(20^{\circ} - 40^{\circ}) \rfloor \rfloor \cos 80^{\circ}$	1/2
		$=\frac{1}{4} \lfloor \cos(60^\circ) + \cos(-20^\circ) \rfloor \rfloor \cos 80^\circ$	1/2
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$	
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} (2 \cos 20^{\circ} \cos 80^{\circ}) \right]$	1/2
		$= \frac{1}{8} \lfloor \cos 80^{\circ} + \cos (20^{\circ} + 80^{\circ}) + \cos (20^{\circ} - 80^{\circ}) \rfloor \rfloor$	1/2
		$=\frac{1}{8}\lfloor \left\lceil \cos 80^{\circ} + \cos \left(100^{\circ}\right) + \cos \left(-60^{\circ}\right) \right\rceil \rfloor$	
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos (180 - 80^{\circ}) + \frac{1}{2} \right]$	1/2
		$= \frac{1}{8} \left[\cos 80^{\circ} - \cos (80^{\circ}) + \frac{1}{2} \right]$	1/2
		$=\frac{1}{16}$	1/2
	d)	Prove: $\sin A . \sin (60 - A) . \sin (60 + A) = \frac{1}{4} \sin 3A$.	04
	Ans	$L.H.S. = \sin A.\sin(60 - A).\sin(60 + A)$	
		$= \sin A (\sin 60\cos A - \cos 60\sin A) (\sin 60\cos A + \cos 60\sin A)$	1/2
		$= \sin A \left[\frac{\sqrt{3}}{2} \cos A - \frac{1}{2} \sin A \right] \left[\frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \right]$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

22103 **Subject Code: Subject Name: Basic Mathematics Model Answer** Q. Sub Marking Answers No. Q.N. Scheme

4.	d)	L.H.S. = $sinA \left[\left(\frac{\sqrt{3}}{2} cosA \right)^2 - \left(\frac{1}{2} sinA \right)^2 \right]$	1/2
		$= sinA \left[\frac{3}{4} cos^2 A - \frac{1}{4} sin^2 A \right]$	
		$=\frac{1}{4}\sin A \left[3\cos^2 A - \sin^2 A\right]$	1/2
		$= \frac{1}{4} \sin A \left[3 \left(1 - \sin^2 A \right) - \sin^2 A \right]$	
		$= \frac{1}{4} \sin A \left[3 - 3 \sin^2 A - \sin^2 A \right]$	1/2
		$= \frac{1}{4} [3 \sin A - 3 \sin^3 A - \sin^3 A]$	
		$=\frac{1}{4}\left[3\sin A-4\sin^3 A\right]$	1/2
		$=\frac{1}{4}\sin 3 A = R.H.S.$	1/2
		(1) (1) (0)	
	e)	Prove: $\tan^{-1} \left(\frac{1}{7} \right) + \tan^{-1} \left(\frac{1}{13} \right) = \cos^{-1} \left(\frac{9}{2} \right)$	04
	Ans	Prove: $\tan^{-1} \begin{pmatrix} 1 \\ \overline{7} \end{pmatrix} + \tan^{-1} \begin{pmatrix} 1 \\ \overline{13} \end{pmatrix} = \cos^{-1} \begin{pmatrix} 9 \\ \overline{2} \end{pmatrix}$ $L.H.S. = \tan^{-1} \begin{pmatrix} 1 \\ \overline{7} \end{pmatrix} + \tan^{-1} \begin{pmatrix} 1 \\ \overline{13} \end{pmatrix}$	
		$= \tan^{-1} \left[\frac{\frac{1}{7} + \frac{1}{13}}{\frac{1}{7} \left(\frac{1}{7} \right) \left(\frac{1}{13} \right)} \right]$ $= \tan^{-1} \left(\frac{\frac{1}{7} + \frac{1}{13}}{\frac{1}{7} \left(\frac{1}{13} \right)} \right)$	2
		$=\tan^{-1}\left(\frac{2}{9}\right)$	1½
		$R.H.S. = \cot^{-1} \left(\frac{9}{1} \right)$	
		$ \begin{vmatrix} \cot^{-1}\left(\frac{9}{2}\right) \neq \cos^{-1}\left(\frac{9}{2}\right) \\ \left(\frac{1}{2}\right) \neq \cos^{-1}\left(\frac{1}{2}\right) \end{vmatrix} $	1/2
		$\therefore L.H.S. \neq R.H.S.$	
		Note: "If Students attempted to solve the question Give appropriate marks."	

Page **13** of **22**

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q.	Sub	Ancward	Marking
No.	Q.N.	Answers	Scheme
5.		Attempt any two of the following:	12
J.			12
	a)	Attempt the following:	06
	(i)	Find the equation of straight line passes through the points $(-4,6)$ and $(8,-3)$.	03
	Ans	Let $(x_1, y_1) = (-4, 6)$ and $(x_2, y_2) = (8, -3)$	
		Equation of line is,	
		$y-y_1 = x-x_1$	
		$\frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2}$	
		$\therefore \frac{y-6}{6+3} = \frac{x+4}{-4-8}$	2
			_
		$\therefore \frac{y-6}{9} = \frac{x+4}{-12}$	
		9 -12 ∴ -12y + 72 = 9x + 36	
		$\therefore 9x + 12y - 36 = 0$	1
		or	
		3x + 4y - 12 = 0	
		3x + y + 12 = 0	
	(ii)	Find the equation of line passing through the point $(2,5)$ and through the intersection of the	03
	(11)	lines $x + y = 0$ and $2x - y = 9$.	03
	A o	Let $(x_1, y_1) = (2,5)$	
	Ans	x + y = 0	
		2x - y = 9	
		$2\lambda - y - y$	
		3x = 9	
		x=3	
		$\therefore y = -3$	
		$\therefore (x_2, y_2) = (3, -3)$	
		Equation of line is,	1
		$\frac{y-y_1}{y_1-y_2} = \frac{x-x_1}{x_1-x_2}$	
		$y_1 - y_2 \qquad x_1 - x_2$ $y_1 - y_2 \qquad x_1 - x_2$	
		$\therefore \frac{y-5}{5+3} = \frac{x-2}{2-3}$	1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	ame: Basic Mathematics <u>Model Answer</u> Subject Code: 2	22103	
Q. No.	Sub Q.N.	Answers		arking heme
		$\begin{vmatrix} 1 + \left(\frac{-3}{2}\right) \left(\frac{2}{3}\right) \end{vmatrix}$ $\therefore \tan \theta = \infty$ $\therefore \theta = \tan^{-1}(\infty)$ $\therefore \theta = 90^{0} \text{or} \frac{\pi}{2}$		1/2
		OR Consider $mm = \left(\frac{-3}{2}\right)\left(\frac{2}{3}\right)$ $= -1$ $m_1 m_2 = -1$ $Lines are perpendicular$ $\theta = 90^0 \text{ or } \frac{\pi}{2}$		1 1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Suk	oject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 22103	3
Q. No.	Sub Q.N.	Answers	Marking Scheme
5.	b)(ii) Ans	Find the distance between lines $3x + 2y = 5$ and $6x + 4y = 6$ $L_1: 3x + 2y - 5 = 0 \text{and} L_2: 6x + 4y - 6 = 0$ $\therefore L_1: 6x + 4y - 10 = 0 \text{and} L_2: 6x + 4y - 6 = 0$ $\therefore a = 6 , b = 4 , c_1 = -10 \text{and} c_2 = -6$ $d = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{-6 + 10}{\sqrt{6^2 + 4^2}} \right $ $= \left \frac{4}{\sqrt{52}} \right $ $= 0.555 \text{or} \frac{2}{\sqrt{13}}$	2
	c) (i) Ans	Attempt the following: A square grassy plot is of side 100 metre. It has a gravel path 10 metres wide all round it on the inside. Find the area of path. Area of path = Area of grassy plot – Area of inner square of grassy plot $= (100)^2 - (80)^2$ $= 3600$	06 03 2 1
	c)(ii) Ans	The volume of cube is 1000 cm^3 . Find its total surface area. Let side of cube = l \therefore volume of cube = $l^3 = 1000$ $\therefore l = 10$ Total surface area of cube = $6l^2$ = $6(10)^2$ = 600	1 1 1
6.	a)	Attempt any two of the following: Find mean, standard deviation and coefficient of variance of the following data:	12

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

34.5	jeet ita.	inci basi	c Mathematics		IVIOGEI	7 1110 11 0	<u></u>	•	ubject	Joue.	2210	
Q. No.	Sub Q.N.					Answ	ers			•		Marking Scheme
6.	a)		Class-Interval	0-10	10-20	20-3	30-40	40-50				06
			Frequency	3	5	8	3	1				
		<u>L</u>										
	Ans		Class Interval	X_i	f_i	$f_i x_i$	$d_i = \frac{x_i - c}{h}$	$\frac{a}{f_i d_i}$	d_i^2	$f_i d_i^2$		
			0-10	5	3	15	-2	-6	4	12		
			10-20	15	5	75	-1	-5	1	5		
			20-30	25	8	200	0	0	0	0		3
			30-40	35	3	105	1	3	1	3		
			40-50	45	1	45	2	2	4	4		
					20	440		-6		24		
		$\therefore x = \frac{1}{2}$ $\therefore x = 2$ $S.D. = 6$	$ \frac{1}{2} = \sqrt{\frac{\sum f_i d_i^2}{N}} - \left(\frac{\sum f_i d_i^2}{N}\right)^2 \times \frac{1}{20} = \sqrt{\frac{24}{20} - \left(\frac{-6}{20}\right)^2} \times \frac{1}{20} = 10.54 $ eight of variance = $\frac{6}{20}$	<u>5</u> ×100								1
			=-	$\frac{x}{10.54} \times \frac{10.54}{22} \times 47.91$	100							1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Q. No.	Sub Q. N.				Ans	wers			Marking Scheme
6.	a)	<u>OR</u>							
			Class Interval	X_i	f_i	$f_i x_i$	x_i^2	$\int_{i}^{\infty} x_{i}^{2}$	
			0-10	5	3	15	25	75	
			10-20	15	5	75	225	1125	3
			20-30	25	8	200	625	5000	
			30-40	35	3	105	1225	3675	
			40-50	45	1	45	2025	2025	
					20	440		11900	
		Mean $\bar{x} = \frac{2}{20}$ $\therefore \bar{x} = \frac{440}{20}$ $\therefore \bar{x} = 22$ S.D. $\sigma = \sqrt{\frac{2}{20}}$		2					1
		= 1	$\frac{11900}{20}$ – (22)) ²					1
		Coefficient		$= \frac{\sigma}{x} \times 100$ $= \frac{10.54}{22} \times 10$ $= 47.91$	00				 1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nan	ne: Basic Mathema	tics	<u>N</u>	Model Ansv	<u>ver</u>		Subje	ct Code:	22103	
Q. No.	Sub Q. N.				An	swers			•		Marking Scheme
6.	b)	Attempt the follo	wing:								06
	(i)	Find mean for the	e follow	ing data:							
		Class-Interval	10-20	20-30	30-4	0 40-5	0	50-60	60-70		03
		Frequency	4	6	10	18		9	3		
	Ans										
	Alls		C	Class	x_i	f_i	f_i	r _i			
				10-20	15	4		60			
				20-30	25	6		150			
				30-40	35	10		350			2
				40-50	45	18		810			
				50-60	55 65	9		495 195			
				00-70	0.5	50		2060			
						30		2000			
		Mean $\overline{x} = \frac{\sum f_i x_i}{N}$									
		$\therefore \overline{x} = \frac{2060}{50}$									1/2
		$\therefore x = 41.2$									1/2
	b)(ii)	The two sets of ol	bservation	on are giv	ven below:						03
					Set-I	Set-II					
					x = 82.5	x = 48.75					
					$\sigma = 7.3$	$\sigma = 8.35$					
		Which of the two	sets is m	nore con	sistent?						

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subj	ect Nan	ne: Basic Mathematics	<u>Model Answer</u>	Subject Code:	2210	03	
_	~ 1						Ξ

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	b)(ii) Ans	Coefficient of variance $V = \frac{\sigma}{x} \times 100$ For set-I	
		$V_{1} = \frac{7.3}{82.5} \times 100$ $\therefore V_{1} = 8.848$ For set-II 8.35	1
		$V_2 = \frac{8.35}{48.75} \times 100$ $\therefore V_2 = 17.128$ $\therefore V_1 < V_2$ $\therefore \text{Set-I is more consistent.}$	1
			 1
	c)	Solve the following equations by matrix inversion method: $x + 3y + 2z = 6, 3x - 2y + 5z = 5, 2x - 3y + 6z = 7.$	06
	Ans	Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 5 \\ 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	
		$ A = \begin{vmatrix} 1 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & -3 & 6 \end{vmatrix}$	
		A = 1(-12+15) - 3(18-10) + 2(-9+4)	
		$ A = -31$ $\therefore A \neq 0$	1
		$\therefore A^{-1}$ exists	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
O.	Sub			Mar	k

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	c)	Matrix of minors = $\begin{vmatrix} -2 & 5 & 3 & 5 & 3 & -2 \\ -3 & 6 & 2 & 6 & 2 & -3 \end{vmatrix}$ $\begin{vmatrix} 3 & 2 & 1 & 2 & 1 & 3 \\ -3 & 6 & 2 & 6 & 2 & -3 \end{vmatrix}$ $\begin{vmatrix} 3 & 2 & 1 & 2 & 1 & 3 \\ -2 & 5 & 3 & 5 & 3 & -2 \end{vmatrix}$ $= \begin{vmatrix} 3 & 8 & -5 \\ 24 & 2 & -9 \\ 19 & 1 & -11 \end{vmatrix}$ $= \begin{vmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \\ 19 & 1 & -11 \end{vmatrix}$ OR $C_{11} = + \begin{vmatrix} -2 & 5 \\ -3 & 6 \end{vmatrix} = 3 , C_{12} = -\begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} = -8 , C_{13} = +\begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} = -5$ $C_{21} = -\begin{vmatrix} 3 & 2 \\ -3 & 6 \end{vmatrix} = -24 , C_{22} = +\begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} = 2 , C_{23} = -\begin{vmatrix} 1 & 3 \\ 2 & -3 \end{vmatrix} = 9$	1
		$\begin{vmatrix} C_{31} = + \begin{vmatrix} 3 & 2 \\ -2 & 5 \end{vmatrix} = 19 & , & C_{32} = -\begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1 & , & C_{33} = + \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} = -11$ $\text{Matrix of cofactors} = \begin{bmatrix} 3 & -8 & -5 \\ -24 & 2 & 9 \\ 19 & 1 & -11 \end{bmatrix}$ $Adj A = \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$	2
		$A^{-1} = \frac{1}{ A } A dj.A$ $= \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \\ -5 & 9 & -11 \end{bmatrix}$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Sub	ject Nan	me: Basic Mathematics <u>Model Answer</u> Subject C	ode:	2210	03	
Q. No.	Sub Q. N.	Answers			Mar Sche	_
6.	c)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 3 & -24 & 19 \\ -8 & 2 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ -5 & 9 & -11 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \\ -5 & 9 & -11 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 2 \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 18 - 120 + 133 \\ -48 + 10 + 7 \\ -30 + 45 - 77 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \frac{1}{-31} \begin{bmatrix} 31 \\ -31 \\ -62 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 7 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 7 \end{bmatrix} \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \\ 7 \end{bmatrix}$ $\therefore x = -1, y = 1, z = 2$				1
		<u>Important Note</u>				

In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than

the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.

21819 3 Hours / 70 Marks

Seat No.

Instructions:

- (1) All Questions are *compulsory*.
- (2) Illustrate your answers with neat sketches wherever necessary.
- (3) Figures to the right indicate full marks.
- (4) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

(a) Prove that $\frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6} = 3$.

(b) Find x, if
$$\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$$
.

- (c) Without using calculator, find the value of $\cos(105^{\circ})$.
- (d) The area of a rectangular garden is 3000 m². Its sides are in the ratio 6 : 5. Find the perimeter of the garden.
- (e) Find the area of ring between two concentric circles whose circumferences are 75 cm and 55 cm.
- (f) Find the range and coefficient of range 40, 52, 47, 28, 45, 36, 47, 50.
- (g) The two sets of observations are given below:

Set I
 Set II

$$\overline{x} = 82.5$$
 $\overline{x} = 48.75$
 $\sigma = 7.3$
 $\sigma = 8.35$

Which of two sets is more consistent?

[1 of 4] P.T.O.

22103 [2 of 4]

2. Attempt any THREE of the following:

(a) Solve the equations by Cramer's rule:

$$x + y + z = 3$$
, $x - y + z = 1$, $x + y - 2z = 0$

(b) If
$$A = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}$$
, find $A^2 - 8A$.

(c) Resolve into partial fractions

$$\frac{3x+2}{(x+1)(x^2-1)}$$

(d) A metal strip having sides $17 \times 7 \times 5$ cm is melted down and minted into coins each of diameter 1.4 cm and thickness 0.08 cm. Assuming no wastage, how many coins can be minted?

12

12

3. Attempt any THREE of the following:

(a) Prove that

$$\tan 70^{\circ} - \tan 50^{\circ} - \tan 20^{\circ} = \tan 70^{\circ} \tan 50^{\circ} \tan 20^{\circ}$$
.

(b) Prove that
$$\frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} = \tan \left(\frac{\theta}{1 + \sin \theta} \right).$$

(c) Prove that
$$\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \sin A \tan 3A$$

(d) Prove that

$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$$

22103

[3 of 4]

4. Attempt any THREE of the following:

(a) Find the adjoint of matrix

$$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$
 $L^{12} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

(b) Resolve into partial fractions

$$\frac{x^4}{x^3+1}$$

- (c) Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$.
- (d) Prove that $\sin^{-1}(3) \sin^{-1}(8) = \cos^{-1}(84)$

(e) Without using calculator, prove that

$$\sin 420^{\circ} \cos 390^{\circ} + \cos (-300^{\circ}) \sin (-330^{\circ}) = 1$$

5. Attempt any TWO of the following:

12

12

- (a) Attempt the following:
 - (i) Find the acute angle between the lines y = 5x + 6 and y = x.
 - (ii) Find the equation of the line passing through the point (4,5) and perpendicular to the line 7x 5y = 420.
- (b) Attempt the following:
 - (i) Find the length of perpendicular from the point (2,3) on the line 4x 6y 3 = 0.
 - (ii) Find the equation of the line passing through (1,7) and having slope 2 units.

P.T.O.

22103 [4 of 4]

- (c) Attempt the following:
 - (i) A square grassy plot is of side 100 metres. It has a gravel path 10 meters wide all round it on the inside. Find the area of the path.
 - (ii) The volume of a sphere is $\frac{88}{21}$ cubic meters. Find its surface area.

6. Attempt any TWO of the following:

12

(a) (i) Find the mean deviation from mean of the following distribution :

C.I.	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
f_i	5	8	15	16	6

(ii) Find range & coefficient of range for the following data:

C.I.	10 – 19	20 – 29	30 – 39	40 – 49	50 – 59
f	15	25	13	17	10

(b) Calculate standard deviation and coefficient of variance of the following table :

Marks below	5	10	15	20	25
No. of Students	6	16	28	38	46

(c) Solve the following equations by using matrix inversion method:

$$x + y + z = 6$$
, $3x - y + 3z = 10$, $5x + 5y - 4z = 3$

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u>

Subject Code:

22103

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answers	Marking
No.	Q.N.	Allawela	Scheme
1.		Attempt any FIVE of the following: Prove that $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 3$	10
	a)	Prove that $\frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6} = 3$	02
	Ans	$L.H.S = \frac{1}{\log_3 6} + \frac{1}{\log_8 6} + \frac{1}{\log_9 6}$	
		$=\frac{\log 3}{\log 6} + \frac{\log 8}{\log 6} + \frac{\log 9}{\log 6}$	1/2
		$=\frac{\log(3\times8\times9)}{\log6}$	1/2
		$=\frac{\log 216}{\log 6}$	
		$= \frac{\log 6}{\log 6}$ $= \frac{3\log 6}{\log 6}$	1/2
		= 3 = R.H.S	1/2
	b)	Find x, if $\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$	02

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nai	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	b)	4 3 9	
	Ans	$\begin{vmatrix} 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0$	
			1/2
		4(-2x-28)-3(3x-77)+9(12+22)=0 $\therefore -8x-112-9x+231+306=0$	
		$\therefore -3x + 425 = 0$	1/2
		$\therefore x = 25$	1
	2)		02
	c)	Without using calculator, find the value of $\cos(105^{\circ})$	
	Ans	$\cos(105^0) = \cos(60^0 + 45^0)$	1/2
		$=\cos 60^{0}\cos 45^{0}-\sin 60^{0}\sin 45^{0}$	1/2
		$= \left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)$	1/2
		$=\frac{1-\sqrt{3}}{2\sqrt{2}}$ or -0.2588	1/2
	d)	The area of a rectangular garden is 3000 m ² . Its sides are in the ratio 6:5. Find the perimeter of the garden	02
	Ans	: Sides are in the ratio 6:5	
		∴ length = $6x$, breadth = $5x$	
		Area = (6x)(5x)	1/2
		$3000 = 30x^2$	
		$\therefore x^2 = 100$	
		$\therefore x = 10$ $\therefore Longth = 60 \text{ m} \qquad \text{Proodth} = 50 \text{ m}$	1
		∴ Length = $60 m$, Breadth = $50 m$ Perimeter = 2 (length + breadth)	
		= 2(60+50) = 220	1/2
		-(00 100) 220	/2
	e)	Find the area of ring between two concentric cicles whose circumferences are 75cm and 55 cm.	02
	Ans	Area of ring = $A(\text{larger circle}) - A(\text{smaller circle})$	

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	e)	:. Area of ring = $\pi r_1^2 - \pi r_2^2 = \pi \left(r_1^2 - r_2^2\right)$	1/2
		$\therefore 2\pi r_1 = 75$	
		$\therefore r = \frac{75}{2\pi}$	1/2
		$\therefore 2\pi r_2 = 55$	
		$\therefore r_2 = \frac{55}{2\pi}$	1/2
		Area of ring = $\pi \left(r_1^2 - r_2^2 \right)$	
		$\left(\left(75\right)^2 \left(55\right)^2\right)$	
		$=\pi\left(\left(\frac{1}{2\pi}\right)^{2}-\left(\frac{1}{2\pi}\right)^{2}\right)$	
		= 206.9	1/2
	f)	Find the range and coefficient of range	00
		40, 52, 47, 28, 45, 36, 47, 50	02
	Ans	Range = $L - S$	
		=52-28 = 24	
		Coefficient of range = $\frac{L-S}{}$	1
		L+S	
		$=\frac{52-28}{52+28}$	
		=0.3	1
			 02
	g)	The two sets of observations are given below: Set I Set II	02
		x = 82.5 $x = 48.75$	
		$\sigma = 7.3$ $\sigma = 8.35$	
		Which of two sets is more consistent?	
	Ans	For Set I	
		$C.V = \frac{\sigma}{-} \times 100$	
		\overline{x}	

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Q. No.	Sub Q. N.	Answers	Marking Scheme
1.	g)	$C.V.=\frac{7.3}{20.5} \times 100 = 8.848$	1/2
		82.5 For Set II	
		$C.V. = \frac{\sigma}{x} \times 100$	
		$=\frac{8.35}{48.75}\times100 = 17.128$	
			1/2
		C.V. of Set I < $C.V.$ of Set II	1
		∴ Set I is more consistent.	1
2.			
4.		Attempt any THREE of the following:	12
	a)	Solve the equations by Cramer's rule:	04
		x + y + z = 3, x - y + z = 1, x + y - 2z = 0	
	Ans		
	1 1115	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = 1(2-1)-1(-2-1)+1(1+1) = 6$	1
		$D_x = \begin{vmatrix} 3 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & -2 \end{vmatrix} = 3(2-1)-1(-2-0)+1(1+0) = 6$	
		D = 6	1
		$\therefore x = \frac{D_x}{D} = \frac{6}{6} = 1$	1
		$D_{y} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix} = 1(-2-0) - 3(-2-1) + 1(0-1) = 6$	
		$D_{y} = \begin{vmatrix} 1 & 3 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & -2 \end{vmatrix} = 1(-2-0) - 3(-2-1) + 1(0-1) = 6$	
		$\therefore y = \frac{D_y}{1} = \frac{6}{1} = 1$	
		D 6	1
		$D_z = \begin{vmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 1(0-1)-1(0-1)+3(1+1)=6$	
		$D_z = \begin{vmatrix} 1 & -1 & 1 \end{vmatrix} = 1(0-1)-1(0-1)+3(1+1)=6$	
		$\therefore z = \frac{D_z}{D} = \frac{6}{6} = 1$	1
		D 6	
<u> </u>			1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	b) Ans	If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \end{bmatrix}$, find $A^2 - 8A$. $A^2 = AA = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \end{bmatrix}$ $A^2 = \begin{bmatrix} 4 + 16 + 16 & 8 + 8 + 16 & 8 + 16 + 8 \\ 8 + 8 + 16 & 16 + 4 + 16 & 16 + 8 + 8 \\ 8 + 16 + 8 & 16 + 8 + 8 & 16 + 16 + 4 \end{bmatrix}$ $A^2 = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 36 & 32 \end{bmatrix}$ $A^2 = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 36 & 32 \end{bmatrix}$ $8A = 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 36 \end{bmatrix}$	1 1 1
	c) Ans	$A^{2} - 8A = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \end{bmatrix} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 20 & 0 \end{bmatrix}$ Resolve into partial fractions $\frac{3x + 2}{(x+1)(x^{2} - 1)}$ $\frac{3x + 2}{(x+1)^{2}(x-1)} = \frac{A}{x+1} + \frac{B}{(x+1)^{2}} + \frac{C}{x-1}$ $\therefore 3x + 2 = A(x-1)(x+1) + B(x-1) + C(x+1)^{2}$ Put $x = -1$ $\therefore -3 + 2 = B(-1-1)$ $B = \frac{1}{2}$ Put $x = 1$	1 04 ½

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nan	e: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	c)	$\therefore 3+2=C(1+1)^{2}$ $\boxed{C=\frac{5}{4}}$ Put $x=0, B=\frac{1}{2}, C=\frac{5}{4}$ $\therefore 2=A(0-1)(0+1)+\frac{1}{2}(0-1)+\frac{5}{4}(0+1)^{2}$	1
		$A = -\frac{5}{4}$ $\therefore \frac{3x+2}{(x+1)^2(x-1)} = \frac{-\frac{5}{4}}{x+1} + \frac{\frac{1}{2}}{(x+1)^2} + \frac{\frac{5}{4}}{x-1}$	1 1/2
	d) Ans	A metal strip having sides $17 \times 7 \times 5$ cm is melted down and minted into coins each of diameter 1.4 cm and thickness 0.08 cm. Assuming no wastage, how many coins can be minted Metal strip has dimensions $17 \times 7 \times 5$ cm	04
		Volume of metal strip= $17 \times 7 \times 5 = 595 \text{ cm}^3$	1/2
		Coin has diameter 1.4 cm \therefore radius = 0.7 cm Thickness of coin = 0.08 cm	1/2
		Volume of one coin = $\pi r^2 h$ = $\pi (0.7)^2 (0.08)$ = 0.123 Number of coin minted = $\frac{\text{Volume of metal strip}}{\text{Volume of one coin}}$ = $\frac{595}{0.123}$	1
		= 4837.4 ≈ 4837	2
3.		Attempt any THREE of the following:	12
	a)	Prove that $\tan 70^0 - \tan 50^0 - \tan 20^0 = \tan 70^0 \tan 50^0 \tan 20^0$	04
	Ans	$\therefore 70^0 - 20^0 = 50^0$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	a)	$\tan\left(70^{0}-20^{0}\right) = \tan 50^{0}$	1
		$\frac{\tan 70^0 - \tan 20^0}{1 + \tan 70^0 \tan 20^0} = \tan 50^0$	1
			1/
		$\tan 70^{0} - \tan 20^{0} = \tan 50^{0} \left(1 + \tan 70^{0} \tan 20^{0} \right)$ $\tan 70^{0} - \tan 20^{0} = \tan 50^{0} + \tan 50^{0} \tan 70^{0} \tan 20^{0}$	1/2
		$\tan 70^{0} - \tan 20^{0} = \tan 30^{0} + \tan 30^{0} \tan 70^{0} \tan 20^{0}$ $\tan 70^{0} - \tan 50^{0} - \tan 20^{0} = \tan 70^{0} \tan 50^{0} \tan 20^{0}$	1/2
			1
	b)	Prove that $\frac{1+\sin\theta - \cos\theta}{1+\sin\theta + \cos\theta} = \tan\left(\frac{\theta}{2}\right)$	04
	Ans	$1+\sin\theta-\cos\theta$	
		$1+\sin\theta+\cos\theta$	
		$=\frac{1-\cos\theta+\sin\theta}{1+\cos\theta+\sin\theta}$	
		$2\sin^2\frac{\theta}{2} + 2\sin\frac{\theta}{2} \times \cos\frac{\theta}{2}$	
		$= \frac{2}{2\cos^2\frac{\theta}{2} + 2\sin\frac{\theta}{2} \times \cos\frac{\theta}{2}}$	2
		$2\cos^2\frac{\omega}{2} + 2\sin\frac{\omega}{2} \times \cos\frac{\omega}{2}$	
		$\left[2\sin\frac{\theta}{2} \left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2} \right)^{2} \right]$	
		$= \frac{1}{2\cos\frac{\theta}{2}\sin\frac{\theta}{2} + \cos\frac{\theta}{2}}$	1
		$\left(\mathbf{A}\right) ^{\prime}$	
		$=\tan\left(\frac{\omega}{2}\right)$	1
		(2)	
	c)	Prove that $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos 2A + \cos 6A} = \cos A - \sin A \tan 3A$	04
		Prove that $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \sin A \tan 3A$ $\cos 2A + 2\cos 4A + \cos 6A - 2\cos 4A + \cos 2A + \cos 6A$	
	Ans	$\frac{1}{\cos A + 2\cos 3A + \cos 5A} = \frac{1}{2\cos 3A + \cos A + \cos 5A}$	
		$2\cos 4A + 2\cos\left(\frac{2A+6A}{2}\right)\cos\left(\frac{2A-6A}{2}\right)$	
		$=\frac{2\cos 4A + 2\cos\left(\frac{2A+6A}{2}\right)\cos\left(\frac{2A-6A}{2}\right)}{2\cos 3A + 2\cos\left(\frac{A+5A}{2}\right)\cos\left(\frac{A-5A}{2}\right)}$	1
		$\begin{array}{c c} 2\cos 3A + 2\cos \left(\begin{array}{c} 2 \end{array} \right) \cos \left(\begin{array}{c} 2 \end{array} \right) \end{array}$	

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103
Subject Name: basic Mathematics	<u>iviouei Aliswei</u>	Subject Code:	22103

Q. No.	Sub Q.N.	Angwerg						
3.	c)	$\cos A + 2\cos 3A + \cos 5A = 2\cos 3A + 2\cos 3A \cdot \cos(-2A)$						
		$= \frac{2\cos 4A (1+\cos(-2A))}{2\cos 3A (1+\cos(-2A))}$ $= \frac{\cos 4A}{2}$	1/2					
		$= \frac{\cos 3A}{\cos 3A}$ $= \frac{\cos (3A + A)}{\cos 3A}$	1/2					
		$= \frac{\cos 3A \cos A - \sin 3A \sin A}{\cos 3A}$ $= \frac{\cos 3A \cos A}{\cos A} - \frac{\sin 3A \sin A}{\cos A}$	1/2					
		$\cos 3A \qquad \cos 3A$ $= \cos A - \tan 3A \sin A$ $= R.H.S$						
	d) Ans	04						
		$= \frac{\sqrt{8}}{2} \left[\sin 40^{0} \sin 80^{0} \right] \sin 20^{0}$ $= \frac{\sqrt{8}}{4} \left[\cos 40^{0} - \cos 120^{0} \right] \sin 20^{0}$	1/2					
		T	1/2					
		$= \frac{\sqrt{3}}{4} \left[\cos 40^{0} - \cos \left(180^{0} - 60 \right) \right] \sin 20^{0}$ $= \frac{\sqrt{3}}{4} \left[\cos 40^{0} + \cos 60^{0} \right] \sin 20^{0}$						
		$=\frac{\sqrt{3}}{4}\left[\cos 40^0 + \cos 60^0\right] \sin 20^0$						
		$= \frac{\sqrt{3}}{4} \left[\cos 40^{0} + \frac{1}{2} \right] \sin 20^{0}$ $= \frac{\sqrt{3}}{4} \left[\cos 40^{0} \sin 20^{0} + \frac{1}{2} \sin 20^{0} \right]$	1/2					

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
---------------------------------	---------------------	---------------	-------	--

•	,	<u></u>	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$= \frac{\sqrt{8}}{8} \left[\sin 60^{0} + \sin (-20^{0}) + \sin 20^{0} \right]$ $= \frac{\sqrt{8}}{8} \left[\sin 60^{0} + \sin 20^{0} - \sin 20^{0} \right]$	1/2
		$=\frac{\sqrt{3}}{8}\frac{\sqrt{3}}{2} = \frac{3}{16}$	1/2
4.		Attempt any THREE of the following:	12
	a)	Find the adjoint of matrix $A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	04
	Ans	$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 5 & 3 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 3 & 2 \end{vmatrix} & \begin{vmatrix} 5 & 5 \\ 3 & 1 \end{vmatrix} \end{bmatrix}$	
		= -1 -1 -1	2
		$\begin{bmatrix} 7 & -5 & -13 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} -3 & -1 & 5 \\ 1 & -1 & 1 \\ 7 & 5 & -13 \end{bmatrix}$	1
			1
		$AdjA = \begin{bmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{bmatrix}$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	Resolve in to partial fractions $\frac{x^4}{x^3+1}$	04
	Ans	x^3+1 x^4	
		$x^4 + x$ $ -$	
		-x	
		$\frac{x^4}{x^3 + 1} = x - \frac{x}{x^3 + 1}$	1/2
		$\frac{x}{x^3 + 1} = \frac{x}{(x+1)(x^2 - x + 1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1}$	
		$\therefore x = (x^2 - x + 1)A + (x + 1)(Bx + C)$	
		Put $x = -1$ $\therefore -1 = 3A$	
		$\therefore A = \frac{-1}{3}$	1
		$ \begin{array}{c} 3\\ \text{Put } x = 0 \end{array} $	
		0 = (1)A + (1)C	
		$0 = \frac{-1}{-1} + C$	
		3 $\therefore C = \frac{1}{}$	1
		3	
		Put $x = 1$ $\therefore 1 = (1)A + 2(B+C)$	
		$\frac{1}{1-1} \frac{-1}{2R+2}$	
		$\therefore 1 = \frac{-1}{3} + 2B + \frac{2}{3}$	
		$\therefore 1 - \frac{1}{3} = 2B$	
		$\therefore \frac{2}{3} = 2B$	
		3	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	b)	$\therefore B = \frac{1}{3}$ $\therefore \frac{x}{(x+1)(x^2 - x+1)} = \frac{\frac{-1}{3}}{x+1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$ $\frac{x^4}{x^3 + 1} = \frac{-\frac{1}{3}}{x} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1}$	1
			1/2
	c)	Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$	04
	Ans	$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$ $= \pi + \tan^{-1}\left(\frac{1+2}{1-(1)(2)}\right) + \tan^{-1}(3)$ $= \pi + \tan^{-1}(-3) + \tan^{-1}(3)$ $= \pi - \tan^{-1}(3) + \tan^{-1}(3)$ $= \pi$	1 1 1 1
	d)	Prove that $\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$	04
	Ans	Let $\sin^{-1} \left(\frac{3}{5}\right) = A$ $\therefore \sin A = \frac{3}{5}$ $\therefore \cos^2 A = 1 - \sin^2 A$ $= 1 - \frac{9}{25}$ $= \frac{16}{25}$ $\therefore \cos A = \frac{4}{5}$	
		$\therefore \cos A = \underline{}$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.		$\sin^{-1} \begin{pmatrix} 8 \\ 17 \end{pmatrix} = B \qquad \therefore \sin B = \frac{8}{17}$ $\therefore \cos^2 B = 1 - \sin^2 B$ $= 1 - \frac{64}{289}$	
		$= \frac{225}{289}$ $\therefore \cos B = \frac{15}{17}$ $\therefore \cos(A - B) = \cos A \cos B + \sin A \sin B$	1
		$= \frac{4}{5} \times \frac{15}{17} + \frac{3}{5} \times \frac{8}{17}$ $\therefore \cos(A - B) = \frac{84}{85}$ $\therefore A - B = \cos^{-1} \begin{pmatrix} 84 \\ 85 \end{pmatrix}$ $\sin^{-1} \begin{pmatrix} 3 \\ 5 \end{pmatrix} - \sin^{-1} \begin{pmatrix} 8 \\ 17 \end{pmatrix} = \cos^{-1} \begin{pmatrix} 84 \\ 85 \end{pmatrix}$	1
		$\sin^{-1}\left(\frac{3}{5}\right) - \sin^{-1}\left(\frac{8}{17}\right) = \cos^{-1}\left(\frac{84}{85}\right)$	1
	e)	Without using calculator, Prove that $\sin 420^{0} \cos 390^{0} + \cos(-300^{0}) \sin(-330^{0}) = 1$	04
	Ans		
	Auis	$\sin 420^{0} = \sin \left(90^{0} \times 4 + 60^{0}\right)$ $= \sin 60^{0} = \frac{\sqrt{3}}{2}$	1/2
		$\cos 390^0 = \cos \left(90^0 \times 4 + 30^0 \right)$	
		$=\cos 30^0 = \frac{\sqrt{3}}{2}$	1/2
		$\cos\left(-300^{0}\right) = \cos\left(300^{0}\right)$	1/2
		$=\cos(90^{\circ}\times 3+30^{\circ})$	
		$= \sin 30^0 = \frac{1}{2}$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics Model Answer Subject Code: 22103

54.5	jeet ita.	ine. Dasic Mathematics <u>Model Allswei</u> Subject Code.	22105
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	$\sin\left(-330^{\circ}\right) = -\sin\left(330^{\circ}\right)$	1/2
		$= -\sin(90^{0} \times 3 + 60^{0})$ $= -(-\cos 60^{0}) = \frac{1}{2}$	1/2
		$\sin 420^{0} \cos 390^{0} + \cos(-300^{0}) \sin(-330^{0})$	
		$ = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) $ $ = 1 $	1
			_
5.	,	Attempt any TWO of the following:	12
	a)	Attempt the following:	06
	i) Ans	Find the acute angle between the lines $y = 5x + 6$ and $y = x$. For $y = 5x + 6$ $\therefore 5x - y + 6 = 0$	03
	7 1113	slope $m_1 = -\frac{a}{b} = -\frac{5}{-1} = 5$	
		For $y = x : x - y = 0$	1
		slope $m_2 = -\frac{a}{b} = -\frac{1}{-1} = 1$	1
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
		_ 5-1	
		$ = \left \frac{1}{1+5\times 1} \right $	
		$\therefore \tan \theta = \frac{3}{1(2)}$	1
		$\therefore \tan \theta = \frac{2}{3}$ $\therefore \theta = \tan^{-1} \left(\frac{2}{3}\right)$	
	ii)	Find the equation of the line passing through the point $(4,5)$ and perpendicular to the line	03
		7x - 5y = 420.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subj	ject Nai	me: Basic Mathematics <u>Model Answer</u> Subject Code	: 2210	J3
Q. No.	Sub Q.N.	Answers	Mark Sche	_
5.	a)ii)	Point = $(x_1, y_1) = (4,5)$		
	Ans	Slope of the line $7x - 5y = 420$ is,		
		$m = -\frac{a}{b} = -\frac{7}{-5} = \frac{7}{5}$	2	1
		∴ Slope of the required line is,		
		$m_1 = -\frac{1}{m} = \frac{-5}{7}$		1
		m 7 ∴ equation is,		
		$y - y_1 = m_1 \left(x - x_1 \right)$		
		$\therefore y-5=\frac{-5}{7}(x-4)$		
		7 $\therefore 5x + 7y - 55 = 0$		1
		$\dots \mathcal{S}_{X} \cap \mathcal{Y} = \mathcal{S}_{X} = 0$	-	_
	b)	Attempt the following:	0)6
	i)	Find the length of the perpendicular from the point $(2,3)$ on the line $4x - 6y - 3 = 0$.		3
	Ans	$p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $		
		$= \left \frac{4(2) + (-6)(3) - 3}{\sqrt{(4)^2 + (-6)^2}} \right $	-	1
		$= \left \frac{8 - 18 - 3}{\sqrt{52}} \right $ $= \frac{13}{2} \qquad \text{or} \qquad 1.803$		
		$=\frac{13}{\sqrt{52}}$ or 1.803	2	2
	;;;	Find the equation of the line passing through $(1,7)$ and having slope 2 units.	-	
	ii)	Point = (x_1, y_1) = $(1,7)$ & slope = 2	0	3
	Ans	∴ Equation of line is,		
		$y-y_1=m(x-x_1)$		
		$\therefore y - 7 = 2(x - 1)$ $\therefore 2x - y + 5 = 0$		1
		$\therefore 2x - y + 5 = 0$	2	2

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103

Q. No.	Sub Q.N.	Answers	Marking Scheme										
5.	c)	Attempt the following:	06										
	i) Ans	A square grassy plot is of side 100 meters. It has a gravel path 10 meters wide all round it on the inside. Find the area of the path. Area of path — Area of grassy plot — Area of inner gravel path											
	Ans Area of path = Area of grassy plot – Area of inner gravel path $= (100)^{2} - (80)^{2}$ $= 3600 \text{ sq.m.}$												
	ii)	21											
	Ans	Volume of sphere = $\frac{4}{3}\pi r^3$											
		$\therefore \frac{4}{3}\pi r^3 = \frac{88}{21}$ $r^3 = \frac{88}{21} \times \frac{3}{4} \times \frac{7}{22}$	1										
		$r^3 = 1$ $r = 1$	1										
		Surface area of sphere $=4\pi r^2$											
		$=4\pi (1)^2 = 4\pi \text{ sq.m.}$	1										
6.		Attempt any TWO of the following:	12										
	a)(i)	Find the mean deviation from mean of the following distribution:	03										
		C.I 0-10 10-20 20-30 30-40 40-50											
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

${\bf MAHARASHTRA\ STATE\ BOARD\ OF\ TECHNICAL\ EDUCATION}$

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2019 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 22103

-													
Q. No.	Sub Q.N.		Answers										
6.	a)(i)												
	Ans	C.I.	f_i	x_i	$f_i x_i$	$d_i = a $	$ x_i - \overline{x} $	$f_i d_i$					
		0-10	5	5	25	2	2	110					
		10-20	8	15	120	1	2	96		1			
		20-30	15	25	375		2	30					
		30-40	16	35	560	8	3	128					
		40-50	6	45	270	1	8	108					
			$\sum f_i = 50$		$\sum f_i x_i = 1350$			$\sum f_i d_i = 472$					
		Mean x =	$= \frac{\sum f_i x_i}{\sum f_i}$										
		$\therefore \overline{x} = \frac{135}{50}$ $\therefore x = 27$								1			
		$M.D = \sum_{i=1}^{n}$	$\frac{\sum f_i d_i}{f_i}$										
		$\therefore M.D =$	$\frac{472}{50}$										
		∴ M.D.=								1			
	ii)	Find ran	ge & coefficie	nt of ra	nge for the follow	wing data:				03			
				C.I	10-19 20-29	30-39	40-49	50-59					
				f	15 25	13	17	10					

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	me: Basic IV	lathematic	s		Mod	del Ar	<u>ıswer</u>				Sub	ject Code:	22	2103
Q. No.	Sub Q.N.				Answers										Marking cheme
6.	ii)	C.I	9.5-19.5	19.5-2		29.5-3	9.5	39.5	-49.5	49.5-5	59.5				
	Ans	f	15	25	13		1	.7	10)				1	
		= 5	9.5-9.5 0	L-S											1
		Coefficier	Coefficient of range = $\frac{L-S}{L+S}$ = $\frac{59.5-9.5}{59.5+9.5}$ = 0.725												1
	b)	Calculate s	tandard dev	viation a	nd co-	efficie	ent of	varia	nce of t	he foll	owing to	able:			06
				Mar	ks bel	ow	5	10	15	20	25				
				No.of	Stud	ents	6	16	28	38	46				
	Ans		Class		ſ		£		, x	$c_i - a$	L.J.	12	fd^2		
			Class	X_i	f_i		$f_i x_i$		$d_i = \frac{x}{a}$		f_id_i	d_i^2	$\int_{i}^{\infty} d_{i}^{2}$		
			0-5	2.5	6		15		-2		-12	4	24		
			5-10	7.5	10		75		-1		-10	1	10		
			10-15	12.5	12		150		0		0	0	0		3
			15-20	17.5	10		175		1		10	1	10		
			20-25	22.5	8		180		2		16	4	32		
					46		595				4		76		
			$\frac{\sum f_i x_i}{N} = \frac{5}{2}$												1
		S.D. = σ =	$= \sqrt{\frac{\sum f_i d_i^2}{N}}$	$-\left(\frac{\sum f_{i}}{N}\right)$	$\left(\frac{d_i}{d_i}\right)^2 \times$	(h									

Subject Name: Basic Mathematics				Model A	<u>inswer</u>		Subj	ect Code:	22103	
Q. No.	Sub Q. N.				Ans	wers				Marking Scheme
6.	b)	$S.D. = \sigma = $	$\boxed{\frac{76}{46} - \left(\frac{4}{46}\right)^2}$	×5						
		$S.D. = \sigma = 6$.412							1
		Coefficient	of variance =	$=\frac{\sigma}{x} \times 100$						
			=	$=\frac{6.412}{12.935}\times10$	00					
			=	: 49.57						1
					<u>C</u>	<u> </u>				
			Class Interval	X_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$		
			0-5	2.5	6	15	6.25	37.5		
			5-10	7.5	10	75	56.25	562.5		
			10-15	12.5	12	150	156.25	1875		3
			15-20	17.5	10	175	306.25	3062.5		
			20-25	22.5	8	180	506.25	4050		
					46	595		9587.5		
		Mean $\bar{x} = \underline{\sum}$								1
		S.D. = $\sigma = \sqrt{S.D.}$								

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Na	nme: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
6.	b)	S.D. = $\sigma = 6.412$ Coefficient of variance = $\frac{\sigma}{x} \times 100$ = $\frac{6.412}{12.935} \times 100$	1
		= 49.57	1
	c)	Solve the following equations by matrix inversion method: x + y + z = 6 , $3x - y + 3z = 10$, $5x + 5y - 4z = 3$	06
		Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 3 \\ 5 & 5 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 10 \\ 3 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $ A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -1 & 3 \\ 5 & 5 & -4 \end{bmatrix}$	
		$ A = 1(4-15) - 1(-12-15) + 1(15+5)$ $\therefore A = 36 \neq 0$ $\therefore A^{-1} \text{ exists}$ $\begin{bmatrix} -1 & 3 & 3 & 3 & 3 & -1 \\ 5 & -4 & 5 & 5 \end{bmatrix}$	1
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -1 & 3 & 3 & 3 & 3 & 3 & -1 \\ 5 & -4 & 5 & -4 & 5 & 5 \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & -4 & 5 & -4 & 5 & 5 \\ \begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & -4 & 5 & -4 & 5 & 5 \\ \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 3 & 3 & 3 & 3 & 3 & -1 \end{vmatrix}$	
		Matrix of minors = $\begin{bmatrix} -11 & -27 & 20 \\ -9 & -9 & 0 \\ 4 & 0 & -4 \end{bmatrix}$	1

Sub	ject Na	ame: Basic Mathematics <u>Model Answer</u> Subject Code	: 2	2103
Q. No.	Sub Q. N.	Answers		Marking Scheme
6.	c)	Matrix of cofactors = $\begin{bmatrix} -11 & 27 & 20 \\ 9 & -9 & 0 \\ 4 & 0 & -4 \end{bmatrix}$		1/2
		$Adj.A = \begin{bmatrix} -11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4 \end{bmatrix}$ $A^{-1} = \frac{1}{ A }Adj.A$		1/2
		$\begin{vmatrix} A & 3 \\ & & & & \\ & & & & $		1
		$ \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \frac{1}{36} \begin{vmatrix} -11 & 9 & 4 \\ 27 & -9 & 0 \\ 20 & 0 & -4 \end{vmatrix} \begin{vmatrix} 6 \\ 10 \\ 3 \end{vmatrix} $		
		$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{36} \begin{bmatrix} -66 + 90 + 12 \\ 162 - 90 + 0 \\ 120 + 0 - 12 \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{36} \begin{bmatrix} 36 \\ 72 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		1
		$\begin{bmatrix} z \\ 108 \end{bmatrix} \begin{bmatrix} 3 \\ 108 \end{bmatrix}$ $\therefore x = 1, y = 2, z = 3.$		1
		<u>Important Note</u>		
		In the solution of the question paper, wherever possible all the possible alternative met of solution are given for the sake of convenience. Still student may follow a method other the given herein. In such case, first see whether the method falls within the scope of curriculum, and then only give appropriate marks in accordance with the scheme of marking.	than f the	

11920 3 Hours / 70 Marks

Seat No.								
----------	--	--	--	--	--	--	--	--

Instructions:

- (1) All Questions are *compulsory*.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- (a) Find the value of x if $log_3(x + 6) = 2$.
- (b) Find the area of triangle whose vertices are (-3, 1), (1, -3) and (2, 3).
- (c) Without using calculator, find the value of $\cos (-765^{\circ})$.
- (d) Find the length of the longest pole that can be placed in a room 12 m long 9 m broad and 8 m high.
- (e) Find the volume of the sphere whose surface area is 616 sq. m.
- (f) If mean is 82 and standard deviation is 7, find the coefficient of variance.
- (g) Find range and coefficient of range for the data:

[1 of 4] P.T.O.

2. Attempt any THREE of the following:

(a) If $A = \begin{bmatrix} -2 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$ whether AB is singular or non-singular matrix. LO 2

(b) Resolve into partial fraction:

$$\frac{2x+3}{x^2-2x-3}$$

(c) The voltages in an circuit are related by the following equations :

$$V_1 + V_2 + V_3 = 9$$

$$V_1 - V_2 + V_3 = 3$$

$$V_1 + V_2 - V_3 = 1$$

Find V_1 , V_2 , V_3 by using Cramer's Rule.

(d) Compute standard deviation for the following data:

3. Attempt any THREE of the following:

(a) Simplify:

$$\frac{\cos^2(180^\circ - \theta)}{\sin(-\theta)} + \frac{\cos^2(270^\circ + \theta)}{\sin(180 + \theta)}$$

(b) Prove that:

$$1 + \tan \theta \cdot \tan 2 \theta = \sec 2 \theta$$
.

(c) Prove that:

$$\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A.$$

(d) Prove that:

$$\tan^{-1} \frac{(\underline{1} \cdot + \tan^{-1} (\underline{1} \cdot \underline{\pi}))}{2} + \tan^{-1} \frac{(\underline{1} \cdot \underline{\pi})}{3} = 4.$$

12

12

22103

[3 of 4]

4. Attempt any THREE of the following:

(a) If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ & & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ & & 1 & 3 \end{bmatrix}$ verify $(AB)^T = B^TA^T$.

(b) Resolve in to partial fraction:

$$\frac{3x-2}{(x+2)(x^2+4)}$$

(c) Without using calculator, prove that

$$\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$$

(d) Prove that:

$$\tan A \cdot \tan (60 - A) \cdot \tan (60 + A^{\circ}) = \tan 3A$$

(e) If 3A and 3B are obtuse angles and $\sin A = \frac{12}{13}$, $\cos B = \frac{-4}{5}$,

find $\cos (A + B)$.

5. Attempt any TWO of the following:

- (a) Attempt the following:
 - (i) Find length of perpendicular from the point P (2, 5) on the line 2x + 3y 6 = 0.
 - (ii) Find the equation of line passing through (2, 3) and having slope 5 units.
- (b) Attempt the following:
 - (i) Find the equation of the line passing through the point (2, 3) and perpendicular to the line 3x 5y = 6.
 - (ii) Find the acute angle between the lines 3x y = 4, 2x + y = 3.

P.T.O.

12

12

22103 [4 of 4]

- (c) Attempt the following:
 - (i) A cylinder has hemispherical ends having radius 14 cm and height 50 cm. Find the total surface area.
 - (ii) A solid right circular cone of radius 2 m and height 27 m is melted and recasted into a sphere. Find the volume and surface area of the sphere.

6. Attempt any TWO of the following:

12

(a) Find the mean, standard deviation and coefficient of variance of the following data:

Class – Interval	0-10	10-20	20-30	30-40	40-50
Frequency	14	23	27	21	15

- (b) Attempt the following:
 - (i) From the following data, calculate range and coefficient of range:

Marks	10-19	20-29	30-39	40-49	50-59	60-69
No. of Students	6	10	16	14	8	4

(ii) The two set of observations are given below:

Set I	Set II
$-\frac{1}{x} = 82.5$	$-\frac{1}{x} = 48.75$
σ = 7.3	σ = 8.35

Which of two sets is more consistent?

(c) Solve the following equations by matrix inversion method :

$$x + y + z = 3$$

$$3x - 2y + 3z = 4$$

$$5x + 5y + z = 11$$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 2019 EXAMINATION

22103 **Subject Name: Basic Mathematics Subject Code: Model Answer**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.		Attempt any FIVE of the following:	10
	a)	Find the value of x if $\log_3(x+6) = 2$	02
	Ans	$\log_3\left(x+6\right)=2$	
		$\therefore x + 6 = 3^2$	1
		$\therefore x + 6 = 9$	
		$\therefore x = 3$	1
	b)	Find the area of triangle whose vertices are $(-3,1),(1,-3)$ and $(2,3)$.	02
	Ans	Let $(x_1, y_1) = (-3,1), (x_2, y_2) = (1,-3)$ and $(x_3, y_3) = (2,3)$	
		$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $\therefore A = \frac{1}{2} \begin{vmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 2 & 3 & 1 \end{vmatrix}$ $\therefore A = \frac{1}{2} [-3(-3-3) - 1(1-2) + 1(3+6)] $	1
		$\therefore A = 14$	1
	c)	W'th and an in a last of the second of the s	
		Without using calculator, find the value of $\cos(-765^{\circ})$	02
	Ans	$\cos\left(-765^{0}\right) = \cos\left(765^{0}\right)$	1/2
		$=\cos\left(8\times90+45\right)$	

Subject Name: Basic Mathematics	Model Answer	Subject Code:	22103	
--	---------------------	---------------	-------	--

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	$\cos\left(-765^{0}\right) = \cos 45^{0}$	1
		$=\frac{1}{\sqrt{2}}$ or 0.707	1/2
	d)	Find the length of the longest pole that can be placed in a room 12 m long 9 m broad and 8 m hi	h. 02
	Ans	Let $L = 12$ m, $B = 9$ m, $H = 8$ m Longest pole = Length of diagonal	
		Express pole = Length of diagonal $= \sqrt{L^2 + B^2 + H^2}$	
		$= \sqrt{(12)^2 + (9)^2 + (8)^2}$	1
		= 17 m	1
	e)	Find the volume of the sphere whose surface area is 616 sq.m.	02
	Ans	Surface area = 616	~ 2
		$4\pi r^2 = 616$	1/2
		$\therefore r^2 = \frac{616}{4\pi} = 49.02$	
		$\therefore r = 7.001$	1/2
		$4π$ ∴ $r = 7.001$ Volume = $\frac{4}{3}πr^3$ $= \frac{4}{3}π (7.001)^3$ $= 1437.37$	72
		$=\frac{4}{\pi}(7.001)^3$	
		3	1/2
		=1437.37	1/2
	f)	If mean is 82 and standard deviation is 7, find the coefficient of variance.	02
	Ans	Coefficient of variation = $\frac{\sigma}{-} \times 100$	02
		$\frac{x}{7}$	
		Coefficient of variation = $\frac{7}{82} \times 100$	1
		= 8.537	1
	g)	Find range and coefficient of range for the data:	02
	Ans	3, 7,11,2,16,17,22,20,19	
	AIIS	Range = $L-S$ = $22-2$	1/2
		- 22	

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code: 2	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	g)	∴Range = 20	1/2
		Coefficient of range = $\frac{L-S}{}$	
		L+S $22-2$	1/2
		$=\frac{22-2}{22+2}$	
		=0.833	1/2
2.		Attampt any THREE of the following •	10
		[2 1]	12
	a)	If $A = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$ whether AB is singular or non-singular matrix	04
		$\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$, $b = \begin{bmatrix} 5 & 5 \\ 0 & 2 \end{bmatrix}$ which is singular or non-singular matrix	04
		$\begin{bmatrix} -2 & 0 & 2 \end{bmatrix}$	
	Ans	Attempt any THREE of the following: $ \begin{bmatrix} -2 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} \text{ whether } AB \text{ is singular or non singular matrix} $ $ AB = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} $ $ AB = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} $ $ \begin{bmatrix} 4 & 2 \end{bmatrix} $	
		$=\begin{bmatrix} -4 & 2\\ 18 & 33 \end{bmatrix}$	2
		Consider $ AB = \begin{vmatrix} -4 & 2 \\ 18 & 33 \end{vmatrix}$	
		=-132-36	
		$=-168 \neq 0$	1
		$\therefore AB$ is non singular matrix	1
		2x+3	
	b)	Resolve into partial fraction: $\frac{2x+3}{x^2-2x-3}$	04
	Ans	$\frac{2x+3}{x^2-2x-3} = \frac{2x+3}{(x-3)(x+1)}$	
	AllS	$x^2 - 2x - 3$ $(x - 3)(x + 1)$ A B	
		$=\frac{A}{(x-3)}+\frac{B}{(x+1)}$	1
		$\therefore 2x+3=A(x+1)+B(x-3)$	
		Put $x = -1$	
		$\therefore -2 + 3 = B\left(-1 - 3\right)$	
		$\therefore B = -\frac{1}{4}$	1
		ਰ 	

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	b)	Put $x = 3$ $\therefore 2(3) + 3 = A(3+1)$ $\therefore A = \frac{9}{4}$ $\frac{2x+3}{x^2 - 2x - 3} = \frac{\frac{9}{4}}{(x-3)} + \frac{-\frac{1}{4}}{(x+1)}$	1 1
	c)	The voltages in an circuit are related by following equations: $V_1 + V_2 + V_3 = 9$; $V_1 - V_2 + V_3 = 3$; $V_1 + V_2 - V_3 = 1$. Find V_1 , V_2 and V_3 by using Cramer's rule $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	04
	Ans	$\begin{vmatrix} v_1 + v_2 + v_3 = 3, & v_1 + v_2 + v_3 = 3, & v_1 + v_2 = v_3 = 1. \text{ Tind } v_1, & v_2 \text{ and } v_3 \text{ by using Crainer's Tule} \\ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(1-1)-1(-1-1)+1(1+1) = 4 \\ D_V = \begin{vmatrix} 9 & 1 & 1 \\ 3 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 9(1-1)-1(-3-1)+1(3+1) = 8$	1
		$\therefore V_{1} = \frac{D_{V_{1}}}{D} = \frac{8}{4} = 2$	1
		$D_{V_{2}} = \begin{vmatrix} 1 & 9 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 1(-3-1)-9(-1-1)+1(1-3)=12$ $\therefore V_{2} = \frac{D_{V_{2}}}{D} = \frac{12}{4} = 3$ $D_{V_{3}} = \begin{vmatrix} 1 & 1 & 9 \\ 1 & -1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 1(-1-3)-1(1-3)+9(1+1)=16$	1
		$\therefore V_{3} = \frac{D_{V_{3}}}{D} = \frac{16}{4} = 4$	1
	d)	Compute standard deviation for the following data: 1,2,3,4,5,6,7	04

Subject Name: Basic Mathematics <u>Model Answer</u> Subject				22103					
Q. No.	Sub Q.N.	Answers							
2.	d)	, 1 2 2 4 5 6 7 7							
		Mean $\bar{x} = \sum_{i=1}^{\infty} x_i = \frac{28}{4} = 4$	$\sum_{i} x_{i} = 28$ $x_{i2} = 140$	1					
		$S.D. = \sigma = \sqrt{\frac{\sum x_i^2}{n} - (\bar{x})^2}$ $\therefore \sigma = \sqrt{\frac{140}{7} - (4)^2}$ $\therefore \sigma = 2$		1					
3.		Attempt any THREE of the following:		12					
	a)	Simplify: $\frac{\cos^2(180^0 - \theta)}{\sin(-\theta)} + \frac{\cos^2(270^0 + \theta)}{\sin(180 + \theta)}$							
	Ans			1/2					
	7 1113	$\cos^2\left(180^0 - \theta\right) = \left(-\cos\theta\right)^2 = \cos^2\theta$ $\cos^2\left(270^0 + \theta\right) = \sin^2\theta$							
		$\cos^2\left(270^0 + \theta\right) = \sin^2\theta$ $\sin\left(-\theta\right) = -\sin\theta$							
		$\sin(-\theta) = -\sin\theta$ $\sin(180 + \theta) = -\sin\theta$							
		$\begin{vmatrix} \sin(-\theta) & \sin(180 + \theta) \\ \cos_2\theta & \sin_2\theta \end{vmatrix}$	$\frac{\cos^2\left(180^0 - \theta\right)}{\sin\left(-\theta\right)} + \frac{\cos^2\left(270^0 + \theta\right)}{\sin\left(180 + \theta\right)}$						
		$\begin{bmatrix} = & -\frac{1}{\sin\theta} & -\frac{1}{\sin\theta} \\ -\frac{\sin\theta}{\cos^2\theta} & +\sin^2\theta \end{bmatrix}$		1/2					
				1/2					
		-sinθ 1		1/2					
		$=\frac{-\sin\theta}{-\sin\theta}$		1/2					
		$=-\cos ec\theta$		/2					
	b)	Prove that :		04					
		$1 + \tan\theta \cdot \tan 2\theta = \sec 2\theta$							

Sub	ject Nan	me: Basic Mathematics <u>Model Answer</u> Subject Co	ode:	22103
Q. No.	Sub Q. N.	Answers		Marking Scheme
3.	b)	$1+\tan\theta$. $\tan 2\theta$		
	Ans	$=1+\frac{\sin\theta \sin 2\theta}{\cos^2\theta}$		
		$ \cos\theta \cos 2\theta \\ = \frac{\cos\theta \cos 2\theta + \sin\theta \sin 2\theta}{\cos\theta \cos 2\theta + \sin\theta \sin 2\theta} $		1/4
		$=\frac{\cos\theta\cos2\theta+\sin\theta\sin2\theta}{\cos\theta\cos2\theta}$		1/2
		$=\frac{\cos(\theta-2\theta)}{\cos(\theta-2\theta)}$		1
		$=\frac{1}{\cos\theta\cos2\theta}$		
		$=\frac{\cos(-\theta)}{\cos(-\theta)}$		1/2
		$\cos\theta\cos 2\theta$		
		$=\frac{\cos\theta}{\cos\theta\cos 2\theta}$		
		$=\frac{1}{1}$		
		$=\frac{1}{\cos 2\theta}$		1
		$= \sec 2\theta$		1
	c)	Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$		04
	,	$\cos 4A + \cos 5A + \cos 6A$ $\sin 4A + \sin 5A + \sin 6A$		04
	Ans	$\frac{\sin 4A + \cos 5A + \cos 6A}{\cos 4A + \cos 5A + \cos 6A}$		
		$= \frac{\left(\sin 4A + \sin 6A\right) + \sin 5A}{\left(\sin 4A + \sin 6A\right) + \sin 5A}$		
		$(\cos 4A + \cos 6A) + \cos 5A$		
		$2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A$		2
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A}$		
		$2\sin 5A\cos(-A) + \sin 5A$		
		$= 2\cos 5A\cos(-A) + \cos 5A$		
		$\frac{\sin 5A(2\cos(-A)+1)}{\sin 5A(2\cos(-A)+1)}$		1
		$= \frac{\sin 5A (2\cos(-A)+1)}{\cos 5A (2\cos(-A)+1)}$		
		$= \tan 5A$		1
				-
	d)	Prove that: π		
		$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$		04
		(2) (3) 4		

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$	
	Ans		
		$\left \frac{1}{2} + \frac{1}{3} \right $	
		$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)} \right)$	2
		$= \tan^{-1}(1)$	1
		$=\frac{\pi}{2}$	1
		4	
4.		Attempt any THREE of the following:	12
		$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	04
	a)	If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify $(AB)^T = B^T A^T$	
		$\begin{bmatrix} 1 & 4 & 5 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 & 3 \end{bmatrix}$	
	Ans	$AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$	
		$AB = \begin{bmatrix} 1+4-0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \\ 4+10+0 & 0+5+0 & 0+0+0 \end{bmatrix}$	
		$\begin{vmatrix} 4+10+0 & 0+5+0 & 0+0+0 \end{vmatrix}$	
		$\begin{bmatrix} 5 & 1 & -3 \end{bmatrix}$	
		$AB = \begin{vmatrix} 3 & 2 & 6 \\ 14 & 5 & 0 \end{vmatrix}$	1
		$\therefore (AB)^T = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix}$	1/2
		$B^{T}A^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 5 \end{bmatrix}$	1
		$B^{T}A^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 5 \\ -1 & 2 & 0 \end{bmatrix}$	
		$B^{T}A^{T} = \begin{bmatrix} 1+4-0 & 3+0+0 & 4+10+0 \\ 0+2-1 & 0+0+2 & 0+5+0 \end{bmatrix}$	
		$\therefore B^{t} A^{t} = \begin{vmatrix} 0+2-1 & 0+0+2 & 0+5+0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$	
		$\begin{bmatrix} 0+0-3 & 0+0+6 & 0+0+0 \end{bmatrix}$	

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$\therefore B^T A^T = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix}$	1
		$\therefore (AB)^T = B^T A^T$	1/2
	b)	Resolve in to partial fraction:	04
		$\frac{3x-2}{(x+2)(x^2+4)}$	
			1/2
	Ans	$\frac{3x-2}{(x+2)(x^2+4)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+4}$	
		$\therefore 3x - 2 = (x^2 + 4) A + (x + 2) (Bx + C)$	
		Put $x = -2$	
		$\therefore 3(-2) - 2 = \left(\left(-2\right)^2 + 4\right)A$	
		$\therefore -8 = 8A$	1
		$\therefore A = -1$	1
		Put $x = 0$	
		$\therefore -2 = 4A + 2C$ $\therefore 2 - 4(-1) + 2C$	
		$\therefore -2 = 4(-1) + 2C$ $\therefore 2 = 2C$	
		$\therefore C = 1$	1
		Put $x = 1$	
		$3(1) - 2 = ((1)^{2} + 4) A + (1+2)(B(1) + C)$	
		$\therefore 1 = 5A + 3B + 3C$	
		$\therefore 1 = 5(-1) + 3B + 3(1)$	
		$\therefore 3 = 3B$	1
		$\therefore B = 1$	1
		$\therefore \frac{3x-2}{} = \frac{-1}{} + \frac{x+1}{}$	
		$\therefore \frac{3x-2}{(x+2)(x^2+4)} = \frac{-1}{x+2} + \frac{x+1}{x^2+4}$	1/2

Subj	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103
Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	c)	Without using calculator , prove that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{2000}$	04
	Ans	$\cos 20^{0}.\cos 40^{0}.\cos 60^{0}.\cos 80^{0}$	
	7 1115	$= \frac{1}{2} \left(2\cos 20^{\circ}\cos 40^{\circ} \right) \cdot \left(\frac{1}{2} \right) \cos 80^{\circ}$	1/2
			1/2
		$= \frac{1}{4} \lfloor \cos(20^{\circ} + 40^{\circ}) + \cos(20^{\circ} - 40^{\circ}) \rfloor \rfloor \cos 80^{\circ}$	
		$=\frac{1}{4}\lfloor \cos(60^\circ) + \cos(-20^\circ) \rfloor \rfloor \cos 80^\circ$	
		$=\frac{1}{4}\left[\frac{1}{2}\cos 80^{\circ} + \cos 20^{\circ}\cos 80^{\circ}\right]$	1/2
		$= \frac{1}{4} \left[\frac{1}{2} \cos 80^{\circ} + \frac{1}{2} (2 \cos 20^{\circ} \cos 80^{\circ}) \right]$	1/2
		$= \frac{1}{8} \lfloor \cos 80^{\circ} + \cos (20^{\circ} + 80^{\circ}) + \cos (20^{\circ} - 80^{\circ}) \rfloor$	1/2
		$=\frac{1}{8} \lfloor \cos 80^{\circ} + \cos (100^{\circ}) + \cos (-60^{\circ}) \rfloor \rfloor$	
		$= \frac{1}{8} \left[\cos 80^{\circ} + \cos (180 - 80^{\circ}) + \frac{1}{2} \right]$	1/2
		$=\frac{1}{8}\left[\cos 80^{\circ} - \cos \left(80^{\circ}\right) + \frac{1}{2}\right]$	1/2
		$=\frac{1}{16}$	1/2
	d)	Prove that:	04
		$\tan A \cdot \tan (60 - A) \cdot \tan (60 + A) = \tan 3A$ $\tan A \cdot \tan (60 - A) \cdot \tan (60 + A)$	04
	Ans	$= \tan A \cdot \frac{\tan 60 - \tan A}{\tan 60 + \tan A} \cdot \frac{\tan 60 + \tan A}{\tan 60 + \tan A}$	1
		$1+\tan 60 \tan A 1 - \tan 60 \tan A$	
		$= \tan A \cdot \left(\frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A} \right) \left(\frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A} \right)$	1
		$= \frac{\tan A \cdot \left(\frac{3 - \tan^2 A}{1 - 3\tan^2 A} \right)}{1 - 3\tan^2 A}$	1
			1

Subj	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code	e: 2	2103
Q. No.	Sub Q.N.	Answers		Marking Scheme
4.	d)	$= \left(\frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}\right)$		
		$= \tan 3A$		1
	e)	If $\angle A$ and $\angle B$ are obtuse angles and $\sin A = \frac{12}{13}$, $\cos B = \frac{-4}{5}$, find $\cos(A+B)$		04
	Ans	$\sin A = \frac{12}{13}, \cos B = \frac{-4}{5}$		
		$\cos^{2} A = 1 - \sin^{2} A$ $= 1 - \left(\frac{12}{13}\right)^{2}$ $= 1 - \left(\frac{144}{169}\right) = \frac{25}{169}$ $A = \frac{5}{169}$		
		$\cos A = \pm \frac{5}{13}$ $\therefore \cos A = -\frac{5}{13} (\angle A \text{ is obtuse angle})$		1
		$\sin^{2} B = 1 - \cos^{2} B$ $= 1 - \left(-\frac{4}{5}\right)^{2}$ $\sin^{2} B = 1 - \frac{16}{25} = \frac{9}{25}$ $\sin B = \pm \frac{3}{5}$		
		$\therefore \sin B = \frac{3}{5} \qquad (\angle B \text{ is obtuse angle})$		1
		$\therefore \cos(A+B) = \cos A \cdot \cos B - \sin A \cdot \sin B$ $= \left(-\frac{5}{13}\right) \times \left(-\frac{4}{5}\right) - \left(\frac{12}{13}\right) \times \left(\frac{3}{5}\right)$		1
		$=-\frac{16}{65}$		1

Subj	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code:	22103					
Q. No.	Sub Q.N.	Answers	Marking Scheme					
5.		Attempt any TWO of the following:	12					
	a)	Attempt the following:	06					
	(i)	Find length of perpendicular from the point $P(2,5)$ on the line $2x+3y-6=0$	03					
		$d = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $ $p = \left \frac{2(2) + 3(5) - 6}{\sqrt{(2)^2 + (3)^2}} \right $ $p = \frac{13}{\sqrt{13}} \text{or} \sqrt{13} \text{or} 3.61$						
		$p = \left \frac{2(2) + 3(5) - 6}{\sqrt{(2)^2 + (3)^2}} \right $	2					
		$=\frac{13}{\sqrt{13}}$ or $\sqrt{13}$ or 3.61						
	a) ii)	Find the equation of the line passing through $(2,3)$ and having slope 5 units						
	Ans	Point $(x_1, y_1) = (2,3)$ and slope $m = 5$						
		Equation of line is,						
		$y-y_1=m(x-x_1)$						
		y-3=5(x-2)						
		y-3=5(x-2) y-3=5x-10 5x-y-7=0						
		$\therefore 5x - y - 7 = 0$	1					
	b)	Attempt the following:	06					
	i)	Find the equation of the line passing through the point $(2,3)$ and perpendicular to the line	03					
	1)	3x - 5y = 6	03					
	Ans	Point $(x_1, y_1) = (2,3)$						
		Slope of the line $3x-5y-6=0$ is,						
		$m = -\frac{a}{b} = -\frac{3}{-5} = \frac{3}{5}$	1/2					
		∴ Slope of the required line is,						
		$m' = -\frac{1}{\underline{}} = -\frac{5}{\underline{}}$	1/2					
		m = 3						

Sub	oject N	ame: Basic Mathematics	Model Answer	Subject Code:	22103
Q. No.	Sub Q.N.		Answers		Marking Scheme
5.	b)i)	∴equation is,			
	Ans	$y - y_1 = m'(x - x_1)$			
	THIS	$\therefore y-3=-\frac{5}{3}(x-2)$			1
		$\therefore 3y - 9 = -5x + 10$			1
		$\therefore 5x + 3y - 19 = 0$			
	b)ii)	Find the acute angle between th	the lines $3x - y = 4$, $2x + y = 3$.		03
	Ans	For $3x - y = 4$			
		slope $m_1 = -\frac{a}{b} = -\frac{3}{-1} = 3$			1/2
		For $2x + y = 3$			1/-
		slope $m_2 = -\frac{a}{b} = -\frac{2}{1} = -2$			1/2
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $			
		$\therefore \tan\theta = \frac{3 - (-2)}{1 + 3 \times (-2)}$			1
		∴ $\tan\theta = 1$			
		$: \theta = \tan^{-1}(1)$			1
		$\therefore \theta = \frac{\pi}{4}$			
	c)	Attempt the following:			06
	i)	A cylinder has hemispherical en	nds having radius 14 cm and height 5	0 cm. Find the total surfa	ce 03
		area			
	Ans	Given $r = 14$ cm and $h = 50$ cm	1		
			face area of Cylinder + Surface area	of two hemisphere	
		$\therefore A = 2\pi r h + 2\left(2\pi r^2\right) = 2\pi r \left(h + 2\left(2\pi r^2\right)\right) = 2\pi r \left(h + 2\left(2\pi r^2\right)\right)$	+2r)		2
		$=2\pi \left(14\right)\left[50+2\left(14\right)\right]$			2
		$=2184\pi$ or 6861.24			1
					-

Find the volume and surface area of the sphere. Volume of right circular cone = $\frac{1}{3}\pi r^2h$ = $\frac{1}{3}\pi (2)^2 (27)$ = 36π or 113.04 Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ $\therefore Surface$ area of the sphere = $4\pi r^2$ = $4\pi (3)^2$ = 36π or 113.04 6. Attempt any TWO of the following:	03
Find the volume and surface area of the sphere. Volume of right circular cone = $\frac{1}{3}\pi r^2 h$ $= \frac{1}{3}\pi (2)^2 (27)$ $= 36\pi \text{or } 113.04$ Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^2$ $= 4\pi (3)^2$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: a) Attempt any TWO of the following:	
Ans Volume of right circular cone = $\frac{1}{3}\pi r^2h$ = $\frac{1}{3}\pi (2)^2 (27)$ = 36π or 113.04 Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ \therefore Surface area of the sphere = $4\pi r^2$ = $4\pi (3)^2$ = 36π or 113.04 6. Attempt any TWO of the following:)3
$= \frac{1}{3}\pi (2)^{2} (27)$ $= 36\pi \text{ or } 113.04$ Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^{3}$ $\therefore 36\pi = \frac{4}{3}\pi r^{3}$ $\therefore r^{3} = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^{2}$ $= 4\pi (3)^{2}$ $= 36\pi \text{ or } 113.04$ 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	
$= 36\pi \text{or } 113.04$ Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^2$ $= 4\pi (3)^2$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	
$= 36\pi \text{or } 113.04$ Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^2$ $= 4\pi (3)^2$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	
Volume of sphere = Volume of right circular cone = 36π Volume of sphere = $\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ \therefore Surface area of the sphere = $4\pi r^2$ = $4\pi (3)^2$ = 36π or 113.04 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	1
Volume of sphere $=\frac{4}{3}\pi r^3$ $\therefore 36\pi = \frac{4}{3}\pi r^3$ $\therefore r^3 = 27$ $\therefore r = 3$ \therefore Surface area of the sphere $= 4\pi r^2$ $= 4\pi (3)^2$ $= 36\pi$ or 113.04 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	1
$\therefore 36\pi = \frac{4}{3}\pi r^{3}$ $\therefore r^{3} = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^{2}$ $= 4\pi (3)^{2}$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	
$\therefore 36\pi = \frac{4}{3}\pi r^{3}$ $\therefore r^{3} = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^{2}$ $= 4\pi (3)^{2}$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: Find the mean, standard deviation and coefficient of variance of the following data:	
$\therefore r^{3} = 27$ $\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^{2}$ $= 4\pi (3)^{2}$ $= 36\pi \text{or} 113.04$ 6. Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	
$\therefore r = 3$ $\therefore \text{Surface area of the sphere} = 4\pi r^2$ $= 4\pi (3)^2$ $= 36\pi \text{or } 113.04$ 6. Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	
Surface area of the sphere = $4\pi r^2$ = $4\pi (3)^2$ = 36π or 113.04 6. Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	1
$= 4\pi (3)^{2}$ $= 36\pi \text{or} 113.04$ 6. Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	
6. Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	
Attempt any TWO of the following: a) Find the mean, standard deviation and coefficient of variance of the following data:	1
a) Find the mean, standard deviation and coefficient of variance of the following data:	
Find the mean, standard deviation and coefficient of variance of the following data:	2
Class Interval 0-10 10-20 20-30 30-40 40-50)6
Frequency 14 23 27 21 15	
Ans	
Class Interval x_i f_i $f_i x_i$ $d_i = \frac{x_i = a}{h}$ $f_i d_i$ d_i^2 $f_i d_i^2$	
0-10 5 14 70 -2 -28 4 56	
10-20 15 23 345 -1 -23 1 23	
	3
30-40 35 21 735 1 21 1 21	
40-50 45 15 675 2 30 4 60	
100 2500 0 160	

Subject Name: Basic Mathematics <u>Model Answer</u> Subject Code: 2							2103				
Q. No.	Sub Q.N.		Answers							Marking Scheme	
6.	a)	Mean $\bar{x} = \underline{\sum}$	$\frac{\sum f_i x_i}{N} = \frac{250}{100}$	$\frac{00}{0} = 25$							1
		$S.D. = \sigma = \sqrt{\frac{1}{2}}$	$\sqrt{\frac{\sum f_i d_i^2}{N}} - \sqrt{\frac{160}{N}}$	$\left(\frac{\sum f_i d_i}{N}\right)^2 \times \frac{1}{N^2}$	< h						
		$S.D. = \sigma = \sqrt{1}$	$D = \sigma = \sqrt{\frac{160}{100} - \left(\frac{0}{100}\right)^2} \times 10$ $= 12.64$								1
		Coefficient	Defficient of variance $V = \frac{\sigma}{x} \times 100 = \frac{12.64}{25} \times 100$ = 50.56								1
		<u>OR</u>									
			Class Interval	X_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$			
			0-10	5	14	70	25	350			
			10-20	15	23	345	225	5175			
			20-30	25	27	675	625	16875			3
			30-40	35	21	735	1225	25725			
			40-50	45	15	675	2025	30375			
					100	2500		78500			
		Mean $\bar{x} = \sum_{i=1}^{n} x_i$	$\frac{\sum f_i x_i}{N} = \frac{250}{100}$								1
		S.D. $\sigma = \sqrt{\frac{2}{\pi}}$	$\frac{\sum_{i} f_{x}^{2}}{N} (\bar{x})$ $\frac{78500}{100} - (25)$	$\frac{\overline{2}}{\sqrt{2}}$							
		$=\sqrt{-}$ $\sigma = 12$,							1

Sub	ject Na	me: Basic Mathem	atics		Mode	l Ansv	<u>ver</u>		Subject Code:	22103	
Q. No.	Sub Q.N.		Answers							Marking Scheme	
6.	a)	Coefficient of vari	Coefficient of variance $=\frac{\sigma}{2} \times 100$								
	x 12 64										
				$\frac{2.64}{25} \times 100$							
	= 50.56									1	
	b) Attempt the following:									06	
	i)	Calculate the rang	Calculate the range and coefficient of range from the following data:								
		Marks	10-19	20-29	30-39	40-4	9 50-5	59 60-69			
		No. of students	6	10	16	14	8	4			
	Ans										
		Marks No. of students	9.5-19.5	19.5 - 29.	5 29.5-3		39.5-49.5 14	49.5-59.5	59.5-69.5 4	1	
	Range = L-S = 69.5-9.5 = 60 Coefficient of range = $\frac{L-S}{L+S}$ = $\frac{69.5-9.5}{69.5+9.5}$ = 0.76									1	
	b)ii)	The two set of observations are given below:								03	
				5	Set I	Set II					
				-	x =82.5	x =48	.75				
				(σ =7.3	σ =8.	35				
		Which of two set i	s more co	nsistent?							

Sub	ject Na	me: Basic Mathematics <u>Model Answer</u> Subject Code	: 22103	3				
Q. No.	Sub Q.N.	Answers	Markin Scheme	_				
6.	b)	For Set I:						
	ii)	Coefficient of variance = $\frac{\sigma}{2} \times 100$						
	Ans	$= \frac{\overset{x}{7.3}}{82.5} \times 100$ $= 8.848$	1					
		For Set II:						
	Coefficient of variance = $\frac{\sigma}{2} \times 100$ = $\frac{8.35}{2} \times 100$							
		48.75 = 17.128	1					
		Set I is more consistent	1					
	c)	Solve the following equations by matrix inversion method:	06					
		x + y + z = 3						
		3x - 2y + 3z = 4						
	Ans	$5x + 5y + z = 11$ $Let A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 4 \\ 111 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$						
		$ A = \begin{vmatrix} 1 & 1 & 1 \\ 3 & -2 & 3 \\ 5 & 5 & 1 \end{vmatrix}$						
		A = 1(-2-15)-1(3-15)+1(15+10)	1					
		$\therefore A = 20 \neq 0$						
		$\therefore A^{-1}$ exists						
		Matrix of minors = $ \begin{vmatrix} \begin{vmatrix} -2 & 3 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 3 & 3 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 5 \end{vmatrix} \end{vmatrix} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 5 & 5 \end{vmatrix} \end{vmatrix} \end{vmatrix} $						

Subject Name: Basic Mathematics		me: Basic Mathematics <u>Model Answer</u>	er Subject Code:	22103
Q. No.	Sub Q.N.	Answers		Marking Scheme
6.	c)	\[\begin{pmatrix} -17 & -12 & 25 \end{pmatrix}		1
		Matrix of minors = $\begin{bmatrix} -17 & -12 & 25 \\ -4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$		1
		OR $\begin{vmatrix} C_{11} = + \begin{vmatrix} -2 & 3 \\ 5 & 1 \end{vmatrix} = -2 - 15 = -17, \ C_{12} = -\begin{vmatrix} 3 & 3 \\ 5 & 1 \end{vmatrix} = -(3 - 15) - 15 - 15 - 15 - 15 - 15 - 15 - 1$	$-4, C_{23} = -\begin{vmatrix} 1 & 1 \\ 5 & 5 \end{vmatrix} = -(5-5) = 0$	1
		Matrix of cofactors = $\begin{bmatrix} -17 & 12 & 25 \\ 4 & -4 & 0 \\ 5 & 0 & -5 \end{bmatrix}$		1
		$Adj.A = \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$		1/2
		$A^{-1} = \frac{1}{ A } A \text{dj.} A$ $\therefore A^{-1} = \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \\ 25 & 0 & -5 \end{bmatrix}$		1
		$ \begin{array}{c} \therefore X = A^{-1}B \\ \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -17 & 4 & 5 \\ 12 & -4 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 12 \end{bmatrix} \\ \begin{bmatrix} 25 & 0 & -5 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix} \\ \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -51 + 16 + 55 \\ 36 - 16 + 0 \\ 75 + 0 - 55 \end{bmatrix} \end{bmatrix} $		1/2

Subject Name: Basic Mathematics		ame: Basic Mathematics <u>Model Answer</u> Subject Code:	2	2103
Q. No.	Sub Q. N.	Answers		Marking Scheme
6.	c)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$ $\therefore x = 1, y = 1, z = 1$ $\underline{Important Note}$		1
	In the solution of the question paper, wherever possible all the possible alternative method solution are given for the sake of convenience. Still student may follow a method other than given herein. In such case, first see whether the method falls within the scope of the curricul and then only give appropriate marks in accordance with the scheme of marking.			